欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学数学知识点例题精讲《概率》教师版.pdf

    • 资源ID:43618083       资源大小:283.21KB        全文页数:9页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学数学知识点例题精讲《概率》教师版.pdf

    1“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,兼有应用性和趣味性,其内容及延伸贯穿于初等数学到高等数学,因此成为小学数学中新增内容1.能准确判断事件发生的等可能性以及游戏规则的公平性问题2.运用排列组合知识和枚举等计数方法求解概率问题3.理解和运用概率性质进行概率的运算一、概率的古典定义如果一个试验满足两条:试验只有有限个基本结果;试验的每个基本结果出现的可能性是一样的这样的试验,称为古典试验对于古典试验中的事件A,它的概率定义为:mP An,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数小学奥数中所涉及的概率都属于古典概率其中的m和n需要我们用枚举、加乘原理、排列组合等方法求出二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件如果事件A和B为对立事件(互斥事件),那么A或B中之一发生的概率等于事件A发生的概率与事件B发生的概率之和,为 1,即:1P AP B三、相互独立事件事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫做相互独立事件如果事件A和B为独立事件,那么A和B都发生的概率等于事件A发生的概率与事件B发生的概率之积,即:P A BP AP B模块一、概率的意义【例例 1】1】气象台预报“本市明天降雨概率是 80%”对此信息,下列说法中正确的是_本市明天将有 80%的地区降水本市明天将有 80%的时间降水明天肯定下雨明天降水的可能性比较大【考点】概率的意义 【难度】1 星 【题型】填空【关键词】希望杯,决赛【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间80%的概率也不是指肯定下雨,100%的概率才是肯定下雨80%的概率是说明有比较大的可能性下雨例题精讲例题精讲知识要点知识要点教学目标教学目标7-9-1.7-9-1.概率概率2【答案】【例例 2】2】约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,这样轮流掷下去若约翰连续两次掷得的结果相同,则记 1 分,否则记 0 分若汤姆连续两次掷得的结果中至少有 1 次硬币的正面向上,则记 1 分,否则记 0 分谁先记满 10 分谁就赢 赢的可能性较大(请填汤姆或约翰)【考点】概率的意义 【难度】2 星 【题型】填空【关键词】走美杯,5 年级,决赛,第 7 题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况.约翰扔的话,两种情况记 1 分,两种情况记 0 分;汤姆扔的话三种情况记 1 分,一种情况记 0 分.所以汤姆赢得的可能性大.【答案】汤姆【例例 3】3】在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?【考点】概率的意义 【难度】2 星 【题型】解答【解析解析解析】200尾鱼中有25条鱼被标记过,没所以池塘中鱼被标记的概率的实验得出值为252000.125,所以池塘中的鱼被标记的概率可以看作是0.125,池塘中鱼的数量约为1000.125800尾【答案】800【例例 4】4】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块规定:当小光扔时,如果朝上的一面写的是偶数,得1分当小亮扔时,如果朝上的一面写的是奇数,得1分每人扔100次,_得分高的可能性比较大【考点】概率的意义 【难度】2 星 【题型】填空【解析解析解析】因为2、3、5、6、7、9中奇数有4个,偶数只有2个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大【答案】小亮得分高的可能性较大【例例 5】5】一个骰子六个面上的数字分别为0,1,2,3,4,5,现在来掷这个骰子,把每次掷出的点数依次求和,当总点数超过12时就停止不再掷了,这种掷法最有可能出现的总点数是.【考点】概率的意义 【难度】4 星 【题型】填空【解析解析解析】掷的总点数在8至12之间时,再掷一次,总点数才有可能超过12(至多是17)当总点数是8时,再掷一次,总点数是13的可能性比总点数超过13的可能性大当总点数在9至12之间时,再掷一次,总点数是13的可能性不比总点数是14,15,16,17的可能性小例如,总点数是11时,再掷一次,出现05:的可能性相同,所以总点数是1116:的可能性相同,即总数是13的可能性不比总数点数分别是14,15,16的可能性小,综上所述,总点数是13的可能性最大【答案】总点数是13的可能性最大【例例 6】6】从小红家门口的车站到学校,有1路、9路两种公共汽车可乘,它们都是每隔10分中开来一辆小红到车站后,只要看见1路或9路,马上就上车,据有人观察发现:总有1路车过去以后3分钟就来9路车,而9路车过去以后7分钟才来1路车小红乘坐_路车的可能性较大【考点】概率的意义 【难度】4 星 【题型】填空【解析解析解析】首先某一时刻开来1路车,从此时起,分析乘坐汽车如下表所示:分钟12345678910111213141516171819车号1999111111199911111显然由上表可知每10分钟乘坐1路车的几率均为710,乘坐9路车的几率均为310,因此小红乘坐1 路车的可能性较大【答案】1 路车的可能性较大模块二、计数求概率【例例 7】7】如图所示,将球放在顶部,让它们从顶部沿轨道落下,球落到底部的从左至右的概率依次是_ 3【考点】计数求概率 【难度】3 星 【题型】填空【解析解析解析】每到一个岔口,球落入两边的机会是均等的,因此,故从左至右落到底部的概率依次为116、14、38、14、116【答案】左至右落到底部的概率依次为116、14、38、14、116【例例 8】8】一辆肇事车辆撞人后逃离现场,警察到现场调查取证,目击者只能记得车牌是由2、3、5、7、9五个数字组成,却把它们的排列顺序忘记了,警察在调查过程中,如果在电脑上输入一个由这五个数字构成的车牌号,那么输入的车牌号正好是肇事车辆车牌号的可能性是_【考点】计数求概率 【难度】3 星 【题型】填空【解析解析解析】警察在调查过程中,在电脑上输入第一个数字可能是2、3、5、7、9中的任何一个,有5种可能,第二位数字有4种可能,第五位数字有1种可能,所以一共有5432 1120 种可能,则输入正确车牌号的可能性是1120【答案】1120【例例 9】9】分别先后掷 2 次骰子,点数之和为 6 的概率为多少?点数之积为 6 的概率为多少?【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】根据乘法原理,先后两次掷骰子出现的两个点数一共有6636将点数为6的情况全部枚举出来有:1,52,43,34,25,1点数之积为6的情况为:1,62,33,26,1两个数相加和为 6 的有 5 组,一共是 36 组,所以点数之和为 6 的概率是536;点数之积为 6 的概率为41369【答案】(1)536,(2)19【例例 10】10】甲、乙两个学生各从09:这10个数字中随机挑选了两个数字(可能相同),求:这两个数字的差不超过2的概率,两个数字的差不超过6的概率【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】两个数相同(差为 0)的情况有10种,两个数差为1有2918种,两个数的差为2的情况有2 816种,所以两个数的差不超过2的概率有1018161110 1025两个数的差为7的情况有23种两个数的差为8的情况有224种两个数的差为9的情况有2种所以两个数字的差超过6的概率有642310 1025.两个数字的差不超过6的概率有32212525.4【答案】(1)1125,(2)2225【例例 11】11】工厂质量检测部门对某一批次的10件产品进行抽样检测,如果这10件产品中有两件产品是次品,那么质检人员随机抽取2件产品,这两件产品恰好都是次品的概率为多少?这两件产品中有一件是次品的概率为多少?这两件产品中没有次品的概率为多少?【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】从10件产品中选择2件一共有21045C种情况.所以这两件产品恰好都是次品的概率为145两件产品中有一件次品的情况有112816CC种情况,所以两件产品中有一件次品的概率为1645.两件产品中都不是次品的概率有2828C 种情况,所以两件产品都不是次品的概率为2845.【答案】(1)145,(2)1645,(3)2845【例例 12】12】一个班有女生 25 人,男生 27 人,任意抽选两名同学,恰好都是女生的概率是几分之几?【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】从 25 名女生中任意抽出两个人有25243002种不同的方法从全体学生中任意抽出两个人有525113262种不同的方法计算概率:300501326221【答案】50221【例例 13】13】从 6 名学生中选 4 人参加知识竞赛,其中甲被选中的概率为多少?【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】法一:从6名学生中选4人的不同组合有654315432 1 种其中,4人中包括甲的不同组合相当于在5名学生中选3人所以一共有5431032 1 种所以甲被选择上的概率为102153法二:显然这6个人入选的概率是均等的即每个人作为一号选手入选的概率为16,作为二号入选的概率为16,作为三号入选的概率为16,作为四号入选的概率为16,对于单个人“甲”来说,他以头号、二号、三号、四号入选的情况是互斥事件,所以他被入选的概率为1111266663【答案】23【例例 14】14】一块电子手表,显示时与分,使用12小时计时制,例如中午12点和半夜12点都显示为12:00如果在一天(24 小时)中的随机一个时刻看手表,至少看到一个数字“1”的概率是_【考点】计数求概率 【难度】3 星 【题型】填空【关键词】学而思杯,6 年级,1 试,第 8 题【解析解析解析】一天当中,手表上显示的时刻一共有1260720种其中冒号之前不出现1的情况有 2、3、4、5、6、7、8、9 八种,冒号之后不出现1的情况有 6110145种,所以不出现1的情况有45 8360种5 所以至少看到一个数字“1”的情况有720360360种,所以至少看到一个数字“1”的概率为36017202种【答案】12【例例 15】15】从立方体的八个顶点中选3个顶点,你能算出:它们能构成多少个三角形?这些三角形中有多少个直角三角形?随机取三个顶点,这三个点构成直角三角形的可能性有多少?【考点】计数求概率 【难度】3 星 【题型】解答【解析解析解析】从8个顶点中任取3个顶点都能构成三角形,所以应该有87632 156 个如果三角形的三个顶点中任两个都不在正方体的一条棱上,则该三角形不是直角三角形,共有8个不是直角三角形所以直角三角形共有56848个构成直角三角形的可能性有486567【答案】(1)56,(2)48,(3)67【例例 16】16】一个标准的五角星(如图)由10个点连接而成,从这10个点随机选取3个点,则这三个点在同一条直线上的概率为多少,这三个点能构成三角形的概率为多少?如果选取4个点,则这四个点恰好构成平行四边形的概率为多少?【考点】计数求概率 【难度】4 星 【题型】解答【解析解析解析】10个点中任意取3个的情况为109 812032 1 种,其中涉及到5条直线,每条直线上各有4个点,其中任意3点都共线,所以取这 3 点不能够成三角形,这样的概率是34511206C,所以3点构成三角形的概率为1516610个点中取4个点的情形为410109 87210432 1C 种,10个点中平行四边形有10个,所以构成平行四边形的概率为10121021【答案】(1)16,(2)56,(3)121【例例 17】17】如图9个点分布成边长为2厘米的方阵(相邻点与点之间的距离为1厘米),在这9个点中任取3个点,则这三个点构成三角形的概率为多少?这三个点构成面积为12平方厘米的三角形的概率为多少?构成面积为1平方厘米的三角形的概率为多少?构成面积为32平方厘米的概率为多少?构成面积为2平方厘米的三角形的概率为多少?6【考点】计数求概率 【难度】4 星 【题型】解答【解析解析解析】从9个点中任取3个点一共有399 878432 1C 种情况三个点共线一共有3328种情况所以三个点能够成三角形的概率为819184219个点中能构成面积为12的三角形一共有444432种情况所以三个点能够成面积为12平方厘米的三角形的概率为32884219个点中能够成面积为1平方厘米的三角形的情况有46832种情况所以三个点能够成面积为1平方厘米的三角形的概率为32884219个点中能够成面积为32平方厘米的三角形的情况有4种情况所以三个点能够成面积为32平方厘米的三角形的概率为4184219个点中能够成面积为2平方厘米的三角形的情况有8种情况所以三个点能够成面积为2平方厘米的三角形的概率为828421【答案】(1)1921,(2)821,(3)821,(4)121,(6)221【例例 18】18】甲、乙、丙、丁四人互相传球,由甲开始第一次传球,每个人接到球后,都随机从其他人中选择一个人将球传出,那么第四次传球恰好传回甲手里的概率是多少?【考点】计数求概率 【难度】4 星 【题型】解答【解析解析解析】对每一个接到球的人来说,下一次传球的方向有3种可能,所以四次传球的总路线有4381种可能,每一种之间都是互斥的等概率事件.而恰好传回到甲的情况,以第一步为甲乙为例有如下7种情况:乙甲甲丙甲丁甲甲乙乙甲丙丁甲乙甲丁丙甲所以第4次传回甲的概率为3 778127【答案】727模块三、对立事件与相互独立事件【例例 19】19】一张圆桌旁有四个座位,A、B、C、D四人随机坐到四个座位上,求A与B不相邻而坐的概率7【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】四人入座的不同情况有432 124 种A、B相邻的不同情况,首先固定A的座位,有4种,安排B的座位有2种,安排C、D的座位有2种,一共有42216 种,所以A、B相邻而座的概率为216243,那么A、B不相邻而座的概率为21133【答案】13【例例 20】20】某小学六年级有6个班,每个班各有40名学生,现要在六年级的6个班中随机抽取2个班,参加电视台的现场娱乐活动,活动中有1次抽奖活动,将抽取4名幸运观众,那么六年级学生小宝成为幸运观众的概率为多少?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】小宝所在班级被抽中参加娱乐活动的概率为152651153CC,如果小宝参加了娱乐活动,那么小宝成为幸运观众的概率为4140220,所以小宝成为幸运观众的概率为11132060.【答案】160【例例 21】21】从装有 3 个白球,2 个黑球的口袋中任意摸出两球,全是白球的概率【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】法一:5个球任意取出两个有2554102 1C种情况,互相之间都是互斥事件,且出现概率均等,而两个球都是白球有233232 1C种情况,全是白球的概率为310法二:将摸出两个球视作两次行为,摸出第一个球是白球的概率为35,再摸出一个白球的概率为3 11512,所以两次摸出两个白球的概率为3135210(建议讲完独立事件再讲这一方法)【答案】310【例例 22】22】A、B、C、D、E、F六人抽签推选代表,公证人一共制作了六枚外表一模一样的签,其中只有一枚刻着“中”,六人按照字母顺序先后抽取签,抽完不放回,谁抽到“中”字,即被推选为代表,那么这六人被抽中的概率分别为多少?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】A抽中的概率为16,没抽到的概率为56,如果A没抽中,那么B有15的概率抽中,如果A抽中,那么B抽中的概率为0,所以B抽中的概率为511656.同理,C抽中的概率为54116546,D抽中的概率为5431165436,E抽中的概率为543211654326,F抽中的概率为5432111654326.由此可见六人抽中的概率相等,与抽签的先后顺序无关.【答案】六个人抽中的概率相同为16【巩固】如果例题中每个人抽完都放回,任意一个人如果抽中,则后边的人不再抽取,那么每个人抽中的概率为多少?8【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】抽中的概率依次为:16、5166、511666、51116666、5111166666、511111666666,在这种情况下先抽者,抽中的概率大【答案】抽中的概率依次为:16、5166、511666、51116666、5111166666、511111666666,在这种情况下先抽者,抽中的概率大【例例 23】23】在某次的考试中,甲、乙、丙三人优秀(互不影响)的概率为 0.5,0.4,0.2,考试结束后,最容易出现几个人优秀?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】注意他们的优秀率是互不影响的三人都优秀的概率是0.50.40.20.04,只有甲乙两人优秀的概率为0.50.410.20.16,(或0.50.40.040.16)只有甲丙二人优秀的概率0.510.40.20.06,只有乙丙二人优秀的概率10.50.40.20.04,所以有两人优秀的概率为0.160.060.040.26,甲一人优秀的概率 0.510.410.20.24,乙一人优秀的概率10.50.410.20.16,丙一人优秀的概率 10.510.40.20.06,所以只有一人优秀的概率为0.240.160.060.46全都不优秀的概率为10.5 10.4 10.20.24,最容易出现只有一人优秀的情况【答案】1个人优秀【巩固】在某次的考试中,甲、乙两人优秀(互不影响)的概率为 0.5,0.4,考试结束后,只有乙优秀的概率为多少?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】只有乙优秀的概率为0.410.50.2【答案】0.2【例例 24】24】某射手在百步之外射箭恰好射到靶心的概率为40%,如果该射手在百步之外连射三箭,三箭全部射中靶心的概率为多少?有一箭射中靶心的概率为多少?有两箭射中靶心的概率为多少?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】全部射中靶心的概率为0.40.40.40.064第一箭射中,其他两箭射空的概率为 0.410.410.40.144第二箭射中,其他两箭射空的概率为 0.410.410.40.144第三箭射中,其他两箭射空的概率为 0.410.410.40.144有一箭射中的概率为0.1440.1440.1440.432.第一箭射空,其他两箭射中的概率为10.40.40.40.096第二箭射空,其他两箭射中的概率为10.40.40.40.096第三箭射空,其他两箭射中的概率为10.40.40.40.096有两箭射空的概率为0.960.960.960.288.【答案】(1)0.064,(2)0.432,(3)0.288【例例 25】25】设每门高射炮击中敌机的概率为0.6,今欲以99%的把握击中敌机,则至少应配备几门高射炮同时射击?【考点】对立事件与相互独立事件 【难度】3 星 【题型】解答【解析解析解析】如果只配一门高射炮,那么未击中的概率为0.4,9配备两门高射炮那么未击中的概率为0.40.40.16,如果配备三门高射炮,那么未击中的概率为0.40.40.40.064,如果配备四门高射炮,那么未击中的概率为0.40.40.40.40.0256,如果配备五门高射炮,那么未击中的概率为0.40.40.40.40.40.01024,如果配备六门高射炮,那么未击中的概率为60.40.004096所以至少配备6门高射炮,同时射击【答案】6【例例 26】26】某地天气变化的概率是:如果今天晴天,那么明天晴天的概率是34如果今天下雨,那么明天晴天的概率是13今天是星期三,天气温暖晴好小明一家想在星期六去泡温泉,那么星期六晴天的概率是多少?【考点】对立事件与相互独立事件 【难度】4 星 【题型】解答【解析解析解析】根据题意,每天的天气应该只有晴、雨两种可能,不需要考虑阴天等情况,否则是把问题复杂化,而且这道题也没法做了如果今天晴天,那么明天晴天的概率是 3/4如果今天下雨,那么明天晴天的概率是 1/3也就是说:晴晴 概率为34;晴雨 概率为14;雨晴 概率为13;雨雨 概率为23;可以画一个树状图把星期六是晴天的各种情况都列出来:三 三三三三三三三 三三三三三三三 三三三三三三 三三然后再分别计算四种情况的概率:3332744464;311144316;113143416;121143318;所以星期六晴天的概率是2711134764161618576【答案】347576

    注意事项

    本文(小学数学知识点例题精讲《概率》教师版.pdf)为本站会员(君****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开