椭圆定义以及性质.ppt
关于椭圆的定义及性质第一张,PPT共八十九页,创作于2022年6月ABPPPPP|PA|+|PB|=500|AB|=200第二张,PPT共八十九页,创作于2022年6月定义:平面内与两个定点定义:平面内与两个定点F1、F2的距离的和等于常数的距离的和等于常数2a(|F1F2|)的的点的轨迹叫椭圆。这两个定点叫做点的轨迹叫椭圆。这两个定点叫做椭圆的焦点,两个焦点的距离椭圆的焦点,两个焦点的距离2c叫叫做椭圆的焦距做椭圆的焦距椭圆的定义和标准方程椭圆的定义和标准方程第三张,PPT共八十九页,创作于2022年6月求方程的过程求方程的过程:解解解解(1)(1)(1)(1)建系:以建系:以建系:以建系:以F F F F1 1 1 1F F F F2 2 2 2所在的直线为所在的直线为x x x x轴,以线段轴,以线段轴,以线段轴,以线段F F F F1 1 1 1F F2 2 2 2的中垂的中垂的中垂的中垂线为线为线为线为y y y y轴建立直角坐标系轴建立直角坐标系轴建立直角坐标系轴建立直角坐标系,则有两焦点坐标分别为:则有两焦点坐标分别为:F F1 1 1 1(-(-c,0),Fc,0),F2 2(c,o)(c,o)(2)(2)设点设点p(x,y)p(x,y)p(x,y)p(x,y)是椭圆上一点是椭圆上一点是椭圆上一点是椭圆上一点,如图:根据已知有:如图:根据已知有:如图:根据已知有:如图:根据已知有:|PF|PF1 1|+|PF|+|PF2 2|=2a|=2a F1P(x,y)yoF2x这个椭圆的一个标准方程为:这个椭圆的一个标准方程为:(ab0,(ab0,a a2 2=b=b2 2+c+c2 2)第四张,PPT共八十九页,创作于2022年6月求方程的过程求方程的过程:解解(1)(1)建系:以建系:以F F1 1F F2 2所在的直线为所在的直线为y y轴,以线段轴,以线段F F1 1F F2 2的中垂线为的中垂线为x x轴建立直角坐标系轴建立直角坐标系,则有两焦点坐标则有两焦点坐标分别为:分别为:F F1 1(0,-c),F(0,-c),F2 2(0,c)(0,c)(2)(2)设点设点p(x,y)p(x,y)是椭圆上一点是椭圆上一点,如图:根据已知有:如图:根据已知有:|PF|PF1 1|+|PF|+|PF2 2|=2a|=2a F F F F1 1 1 1P(x,yP(x,yP(x,yP(x,y)y y y yo o o oF F F F2 2 2 2x x x x这个椭圆的标准方程为:这个椭圆的标准方程为:(ab0,a(ab0,a2 2=b=b2 2+c+c2 2)第五张,PPT共八十九页,创作于2022年6月椭圆的标准方程椭圆的标准方程分类图示焦点坐标共性F1(-c,0)F2(c,0)长轴长:2a短轴长:2b焦距:2c (a2=b2+c2)F1(0,-c)F2(0,c)第六张,PPT共八十九页,创作于2022年6月椭圆的几何性质椭圆的几何性质:()1.范围范围:|x|a|y|b 椭圆位于直线椭圆位于直线x=a 和直线和直线y=b所围成的矩所围成的矩形区域内形区域内2.对称性:对称性:关于关于x轴和轴和y轴对称,轴对称,也关于原点中心对称也关于原点中心对称A1F1oF2xA1A2B2B1第七张,PPT共八十九页,创作于2022年6月椭圆的几何性质椭圆的几何性质:()F1oF2xA1A2A1B2B13.顶点和长短轴:顶点和长短轴:长轴:长轴:A1A2 短轴:短轴:B1B2 顶点:顶点:A1(-a,0)A2(a,0)B1(0,-b)B2(0,b)4.离心率:离心率:第八张,PPT共八十九页,创作于2022年6月椭圆的第二定义椭圆的第二定义:已知点已知点M(x,y)到定到定点点F(c,0)的距离和它到定直线的距离和它到定直线 的的距离的比为常数距离的比为常数 (ac0),求点,求点M的轨迹方程的轨迹方程M(x,y)oFx(这个方程是椭圆这个方程是椭圆的一个标准方程,的一个标准方程,称这个定点称这个定点F是椭是椭圆的一个焦点,定圆的一个焦点,定直线是椭圆的一条直线是椭圆的一条准线,比值叫这个准线,比值叫这个椭圆的离心率椭圆的离心率)第九张,PPT共八十九页,创作于2022年6月M(x,y)oF2x结论:椭圆有两条和它的结论:椭圆有两条和它的 两个焦点相对应的准线两个焦点相对应的准线F1第十张,PPT共八十九页,创作于2022年6月结论:椭圆有两条和它的两个结论:椭圆有两条和它的两个焦点相对应的准线焦点相对应的准线F1yoF2x与与F2对应的准线方程:对应的准线方程:与与F1对应的准线方程:对应的准线方程:第十一张,PPT共八十九页,创作于2022年6月例例1:求椭圆:求椭圆4x2+y2=2的准线方程的准线方程椭圆的焦点在椭圆的焦点在y轴上,轴上,且且a2=2,b2=0.5,c2=1.5椭圆的两条准线方程为椭圆的两条准线方程为解:由已知有椭圆的标准方程为解:由已知有椭圆的标准方程为第十二张,PPT共八十九页,创作于2022年6月 ex1:椭圆的一个焦点到相应准椭圆的一个焦点到相应准 线的距离为线的距离为 ,离心率为,离心率为 ,则椭圆的短轴长为多少?则椭圆的短轴长为多少?第十三张,PPT共八十九页,创作于2022年6月 eg1:椭圆椭圆9x2+25y2-225=0上一上一点到左准线的距离为点到左准线的距离为2.5,则则P到到右焦点的距离是右焦点的距离是()(A)8 (B)(c)7.5 (D)7椭圆的性质的应用:椭圆的性质的应用:第十四张,PPT共八十九页,创作于2022年6月 eg2:椭圆椭圆 的右焦点为的右焦点为F,设点设点A ,P是椭圆上一动点,是椭圆上一动点,求使求使 取得最小值时的取得最小值时的P的坐标,并求出这个最小值的坐标,并求出这个最小值第十五张,PPT共八十九页,创作于2022年6月问题:平面内到两个定点问题:平面内到两个定点F1,F2的距离的的距离的差是定值差是定值|PF1|-|PF2|=2a的点的点P的轨迹是什的轨迹是什么?么?(1)若这个定值为若这个定值为0,它表示什么?,它表示什么?(2)若这个定值若这个定值=|F1F2|,它表示什么?,它表示什么?(3)若这个定值若这个定值|F1F2|,它表示什么?,它表示什么?(4)若这个定值非零且若这个定值非零且|F1F2|不可能,因为在三角形中,两边之差小于第三边不可能,因为在三角形中,两边之差小于第三边F1F2P第十九张,PPT共八十九页,创作于2022年6月理想化的问题:理想化的问题:一个出租汽车司机想从一个出租汽车司机想从A地点送一个地点送一个乘客到达目的地后,然后返回乘客到达目的地后,然后返回B点的点的家,已知家,已知A、B两点的距离为两点的距离为20公里假公里假设司机送客和返回家都是直线行驶,设司机送客和返回家都是直线行驶,假设汽车每假设汽车每行驶行驶一公里耗费一元,乘一公里耗费一元,乘客每客每乘坐乘坐一公里付费二元,请问这个司一公里付费二元,请问这个司机怎样考虑接受乘客的目的地,他才可机怎样考虑接受乘客的目的地,他才可能至少能收益能至少能收益15元?元?(假设不考虑职业道德)(假设不考虑职业道德)第二十张,PPT共八十九页,创作于2022年6月分析:为了把问题简单化,我们先研究分析:为了把问题简单化,我们先研究 司机刚好只收益司机刚好只收益15元的情形元的情形AB(目的地目的地)2|PA|-(|PA|+|PB|)=|PA|-|PB|=15(注意(注意:|PA|-|PB|=1515时呢?时呢?第二十二张,PPT共八十九页,创作于2022年6月定义:平面内与两个定点定义:平面内与两个定点F1、F2的距离的的距离的差的差的绝对值绝对值等于常数等于常数2a(|F1F2|)的点的轨的点的轨迹叫双曲线。这两个定点迹叫双曲线。这两个定点F1、F2叫做双叫做双曲线的焦点,两个焦点的距离叫做双曲曲线的焦点,两个焦点的距离叫做双曲线的焦距线的焦距2c。(oa0,则有:则有:(1)和和(2)有有公公共共的的焦焦点点,它它们们的的实实轴轴长长和和虚虚轴长轴长正好对换正好对换(2)和和 (3)有有公公共共的的渐渐进进线线,它它们们的的实实轴轴和和虚虚轴轴正好对换。我们称它们为共轭双曲线正好对换。我们称它们为共轭双曲线第三十三张,PPT共八十九页,创作于2022年6月例例4:请请判判断断以以下下方方程程表表示示什什么么样样的的曲曲线线?并并指指出出它它们们的的焦焦点点在在哪哪个个坐坐标标轴上。轴上。第三十四张,PPT共八十九页,创作于2022年6月双曲线的渐近线方程练习:双曲线的渐近线方程练习:例例5.求出下列双曲线的渐近线的方程。求出下列双曲线的渐近线的方程。第三十五张,PPT共八十九页,创作于2022年6月与双曲线的渐近线有关的结论:与双曲线的渐近线有关的结论:(1)求双曲线求双曲线 的渐近线方的渐近线方程时,只需将上式右边的程时,只需将上式右边的1换成换成0即可即可(2)双曲线双曲线 表示任意以表示任意以 为渐近线的双曲线系为渐近线的双曲线系 (k0)第三十六张,PPT共八十九页,创作于2022年6月双曲线的渐近线方程:双曲线的渐近线方程:第三十七张,PPT共八十九页,创作于2022年6月例例:双双曲曲线线的的中中心心在在原原点点,对对称称轴轴是是两两坐坐标标轴轴,有有一一条条渐渐近近线线方方程程为为2x+3y=0,并并且且过过定定点点(2,2)求这个双曲线的方程求这个双曲线的方程.(2,2)第三十八张,PPT共八十九页,创作于2022年6月解解法法一一:如如图图,双双曲曲线线的的两两条条渐渐近近线线把把坐坐标标平平面面分分成成四四部部分分,点点(2,2)刚刚好好在在上上部部分分,故故有有这这条条双双曲曲线线的的焦焦点点在在y轴轴上上,设设它的标准方程为它的标准方程为第三十九张,PPT共八十九页,创作于2022年6月由由双双曲曲线线的的标标准准方方程程为为知它的渐近线方程为:知它的渐近线方程为:第四十张,PPT共八十九页,创作于2022年6月又已知点又已知点(2,2)在双曲线上,则有:在双曲线上,则有:解得:解得:故所求的双曲线的方程为:故所求的双曲线的方程为:第四十一张,PPT共八十九页,创作于2022年6月解解2:据题意:双曲线的渐近线方程为:据题意:双曲线的渐近线方程为:即即不妨设所求的双曲线的方程为:不妨设所求的双曲线的方程为:将点将点(2,2)的坐标代入上式:的坐标代入上式:故所求的双曲线的方程为:故所求的双曲线的方程为:第四十二张,PPT共八十九页,创作于2022年6月证证明明:双双曲曲线线 上上任任一一点点到到它它的的两两渐渐近近线线的的距距离离之之积积为为定定值值,并并求求这个定值。这个定值。证明:由已知,它的渐近线方程为证明:由已知,它的渐近线方程为它们的标准方程为它们的标准方程为 bxay=0设设(x0,y0)是双曲线上的任意一点,则有:是双曲线上的任意一点,则有:第四十三张,PPT共八十九页,创作于2022年6月.p示意:如图,过点示意:如图,过点P向两条渐近线引垂线交两条渐近向两条渐近线引垂线交两条渐近线于点线于点M、N,则有:,则有:MN第四十四张,PPT共八十九页,创作于2022年6月问题:问题:|PM|+|PN|有最值吗?何时有,是多少?有最值吗?何时有,是多少?.pMN第四十五张,PPT共八十九页,创作于2022年6月已知双曲线已知双曲线 右支上一点右支上一点P到它的右焦点的距离为到它的右焦点的距离为10,则,则P到双曲线的左准线的距离是多少到双曲线的左准线的距离是多少?.P(x,y)F2F1xyMN第四十六张,PPT共八十九页,创作于2022年6月回顾回顾:椭圆的焦点半经公式及求法:椭圆的焦点半经公式及求法:(2)设设P(x,y)是椭圆是椭圆 上的上的任意一点,则任意一点,则|PF1|和和|PF2|的值为的值为aey(1)设设P(x,y)是椭圆是椭圆 上的上的任意一点,则任意一点,则|PF1|和和|PF2|的值为的值为aex第四十七张,PPT共八十九页,创作于2022年6月.F1F2.P(x,y)MN分析:如图,过点分析:如图,过点P向两准线引垂线交两准线于点向两准线引垂线交两准线于点M、N,根据双曲线的第二定义:,根据双曲线的第二定义:第四十八张,PPT共八十九页,创作于2022年6月.F1F2.P(x,y)MN同理:同理:第四十九张,PPT共八十九页,创作于2022年6月同理:同理:当焦点在当焦点在y轴上时:轴上时:.F1F2.P(x,y)MNxy|PF1|=a+ey|PF2|=a-ey第五十张,PPT共八十九页,创作于2022年6月如下图提示:你能推出焦点在如下图提示:你能推出焦点在x轴轴上的双曲线的焦半经公式吗?上的双曲线的焦半经公式吗?.P(x,y)F2F1xyMN第五十一张,PPT共八十九页,创作于2022年6月若它的焦点在若它的焦点在x轴上,则有轴上,则有|PF1|、|PF2|为为exa若它的焦点在若它的焦点在y轴上呢?轴上呢?则有则有|PF1|、|PF2|为为eya第五十二张,PPT共八十九页,创作于2022年6月双曲线中三角形双曲线中三角形PF1F2中的边和角中的边和角.P(x,y)F2F1xy正弦定理、余弦定理、和三角形面积公式在图正弦定理、余弦定理、和三角形面积公式在图中的体现及相互间的联系。中的体现及相互间的联系。第五十三张,PPT共八十九页,创作于2022年6月.P(x,y)F2F1xy第五十四张,PPT共八十九页,创作于2022年6月(1)余弦定理:.P(x,y)F2F1xy第五十五张,PPT共八十九页,创作于2022年6月(2)正弦定理:.P(x,y)F2F1xy第五十六张,PPT共八十九页,创作于2022年6月(3)三角形的面积公式:.P(x,y)F2F1xy第五十七张,PPT共八十九页,创作于2022年6月实例实例1:点点P是双曲线是双曲线 上的一点,上的一点,F1、F2是焦点,是焦点,,求求 的面积的面积.pF1F2xy第五十八张,PPT共八十九页,创作于2022年6月圆锥曲线的统一定义圆锥曲线的统一定义平面内到定点的距离和到定直线的距离的比是平面内到定点的距离和到定直线的距离的比是定值定值e的点的轨迹是:的点的轨迹是:(1)当当0e1 时表示一个双曲线时表示一个双曲线(3)当当 e=1 时表示什么呢?时表示什么呢?平面内到定点的距离等于到定直线的距离的点平面内到定点的距离等于到定直线的距离的点的轨迹叫抛物线的轨迹叫抛物线至此,椭圆、双曲线、抛物线的定义就统一起至此,椭圆、双曲线、抛物线的定义就统一起来了,这三种曲线统称为圆锥曲线。来了,这三种曲线统称为圆锥曲线。第五十九张,PPT共八十九页,创作于2022年6月 平面内到定点的距离和它到定直线的距平面内到定点的距离和它到定直线的距离相等的点的轨迹叫抛物线离相等的点的轨迹叫抛物线抛物线的标准方程:抛物线的标准方程:以后我们约定这个定点到定直线的距离为以后我们约定这个定点到定直线的距离为P.FLK讨论:讨论:怎样建立坐标怎样建立坐标系所得方程简系所得方程简单?单?第六十张,PPT共八十九页,创作于2022年6月建系方式一:建系方式一:以后我们约定这个定点到定直线的距离为以后我们约定这个定点到定直线的距离为P.FLK讨论:讨论:怎样建立坐标怎样建立坐标系所得方程简系所得方程简单?单?Oxy如图:以过焦点且垂直于准线的直线为如图:以过焦点且垂直于准线的直线为x轴,以线段轴,以线段KF的垂直平分线为的垂直平分线为y轴,建立轴,建立直角坐标系。则直角坐标系。则F点的坐标为点的坐标为 准线准线的方程为的方程为第六十一张,PPT共八十九页,创作于2022年6月.FLKOxy设点设点M(x,y)是所求的曲线上的任意一点,过是所求的曲线上的任意一点,过点点M作作MD垂直直线垂直直线L交交L于点于点D,则有根据,则有根据定义有定义有:|MD|=|MF|.M(x,y)D它叫抛物线的一种标准方程它叫抛物线的一种标准方程它的焦点坐标和准线方程是?它的焦点坐标和准线方程是?第六十二张,PPT共八十九页,创作于2022年6月抛物线的标准方程有四种:请分别画出它们的草图,并指出它们的焦点坐标、请分别画出它们的草图,并指出它们的焦点坐标、准线方程准线方程你还记得上式中你还记得上式中P的几何含义吗?的几何含义吗?第六十三张,PPT共八十九页,创作于2022年6月.FLKOxy焦点的坐标为:焦点的坐标为:准线的方程为准线的方程为.M(x,y)D第六十四张,PPT共八十九页,创作于2022年6月.FLKOxy焦点的坐标为:焦点的坐标为:准线的方程为准线的方程为.M(x,y)D第六十五张,PPT共八十九页,创作于2022年6月焦点的坐标为:焦点的坐标为:准线的方程为准线的方程为.FLKOxy.M(x,y)D第六十六张,PPT共八十九页,创作于2022年6月焦点的坐标为:焦点的坐标为:准线的方程为准线的方程为.FLKOxy.M(x,y)D第六十七张,PPT共八十九页,创作于2022年6月例例1:(1)已知抛物线的焦点坐标是已知抛物线的焦点坐标是 F(0,-2),求它的标准方程求它的标准方程.FLKOxy第六十八张,PPT共八十九页,创作于2022年6月(2)已知抛物线的标准方程为已知抛物线的标准方程为 y=x2,求它的焦点坐标和准线方程求它的焦点坐标和准线方程.FLKOxy第六十九张,PPT共八十九页,创作于2022年6月例例2:探照灯的反射镜的纵截面是抛物:探照灯的反射镜的纵截面是抛物线的一部分,灯口的直经为线的一部分,灯口的直经为60cm,灯深,灯深为为40cm,求抛物线的标准方程和焦点的,求抛物线的标准方程和焦点的位置。位置。.FOxyAB第七十张,PPT共八十九页,创作于2022年6月抛物线的几何性质:抛物线的几何性质:(1)范围:范围:(一一)(二二)(三三)(四四)(2)对称轴及顶点对称轴及顶点(一一)(二二)(三三)(四四)(3)离心率离心率 抛物线的离心率恒为抛物线的离心率恒为1第七十一张,PPT共八十九页,创作于2022年6月抛物线的焦半径公式抛物线的焦半径公式:(一一)(二二)(三三)(四四)设设M(x,y)是以下抛物线上的任意一点,是以下抛物线上的任意一点,F是抛物线的焦点,是抛物线的焦点,则焦半经则焦半经EF的长度为:的长度为:当抛物线的方程为当抛物线的方程为y2=2px时时,则则|MF|=当抛物线的方程为当抛物线的方程为y2=-2px时时,则则|MF|=当抛物线的方程为当抛物线的方程为x2=2py时时,则则|MF|=当抛物线的方程为当抛物线的方程为x2=-2py时时,则则|MF|=第七十二张,PPT共八十九页,创作于2022年6月例例3:过抛物线:过抛物线y2=2px的焦点的焦点F任意作一任意作一条直线交抛物线于条直线交抛物线于A、B两点,求证:以两点,求证:以A、B为直经的圆和这个抛物线的准线相切。为直经的圆和这个抛物线的准线相切。.FLKOxyABM第七十三张,PPT共八十九页,创作于2022年6月过抛物线过抛物线y2=2px的焦点的焦点F的弦长公式:设的弦长公式:设直线直线AB与抛物线的对称轴的夹角为与抛物线的对称轴的夹角为,则则有有.FOxyAB第七十四张,PPT共八十九页,创作于2022年6月特殊情形:当特殊情形:当=90,即,即AB和对称轴垂直时:和对称轴垂直时:.FOBA|AB|=2|AF|=2p此时称线段此时称线段AB为抛物线的为抛物线的通经通经第七十五张,PPT共八十九页,创作于2022年6月x.FOyBA设直线设直线AB的斜率为的斜率为k(k0),则直线的点斜则直线的点斜式方程为式方程为联立方程:联立方程:第七十六张,PPT共八十九页,创作于2022年6月x.FOyBA第七十七张,PPT共八十九页,创作于2022年6月x.FOyBA还有新的方法:还有新的方法:设设A、B两点的坐标分别为两点的坐标分别为(x1,y1)、(x2,y2)两式相减得:两式相减得:第七十八张,PPT共八十九页,创作于2022年6月x.FOyBA第七十九张,PPT共八十九页,创作于2022年6月例例4:过抛物线:过抛物线y2=2px的焦点的一条的焦点的一条直线与抛物线的两个交点的横坐标直线与抛物线的两个交点的横坐标分别是分别是x1、x2,纵坐标分别是纵坐标分别是y1、y2,求求证证:x.FOyBA分析:当直线的斜率不存在时,分析:当直线的斜率不存在时,当直线的斜率存在时。当直线的斜率存在时。第八十张,PPT共八十九页,创作于2022年6月例例5:PQ是过抛物线的焦点的一条弦,通是过抛物线的焦点的一条弦,通过点过点P和抛物线的顶点的直线交准线于点和抛物线的顶点的直线交准线于点M,求证:直线,求证:直线MQ平行于抛物线的对平行于抛物线的对称轴称轴x.FOyQPM分析:分析:不妨设抛物线的标准方程为不妨设抛物线的标准方程为y2=2px设点设点P的坐标为的坐标为(x1,y1),点点Q的坐标为的坐标为下面只需证:下面只需证:ym=y2(x2,y2),而且易知点而且易知点M的横坐标为的横坐标为第八十一张,PPT共八十九页,创作于2022年6月x.FOyQPM解:不妨设抛物线的标准方程为解:不妨设抛物线的标准方程为y2=2px设点设点P的坐标为的坐标为(x1,y1),点点Q的坐标为的坐标为(x2,y2),而且易知点而且易知点M的横坐标为的横坐标为设直线设直线PQ的斜率为的斜率为k,则直线则直线PQ的方的方程程为为联立方程:联立方程:第八十二张,PPT共八十九页,创作于2022年6月又因为点又因为点P、O、M在一条直线上,则有:在一条直线上,则有:x.FOyQPMym=y2即即MP垂直于这条抛物线垂直于这条抛物线的对称轴的对称轴第八十三张,PPT共八十九页,创作于2022年6月测试:测试:(1)求过点求过点A(-2,-4)的抛物线的标准方程的抛物线的标准方程(2)过抛物线过抛物线y2=4x的焦点的直线交抛物的焦点的直线交抛物线于线于A(x1,y1),B(x2,y2)两点,如果两点,如果x1+x2=6,求求|AB|的长。的长。第八十四张,PPT共八十九页,创作于2022年6月直线和抛物线的交点的个数:直线和抛物线的交点的个数:请你讨论一下过点请你讨论一下过点(-1,0)的直线和抛物线的直线和抛物线y2=6x的交点个数,并得出相应的结论所对应的交点个数,并得出相应的结论所对应的直线的斜率的范围的直线的斜率的范围x.FOy第八十五张,PPT共八十九页,创作于2022年6月讨论双曲线讨论双曲线 和直线和直线y=kx+m(k0)的交点的个数,的交点的个数,(利用图形和解析式的结合)(利用图形和解析式的结合)第八十六张,PPT共八十九页,创作于2022年6月第八十七张,PPT共八十九页,创作于2022年6月思考:直线思考:直线 l与椭圆相交于与椭圆相交于P、Q两点,且线段两点,且线段PQ的中的中点为点为M,如下图试用这,如下图试用这P、Q点的坐标表示点的坐标表示(1)直线直线l的斜率的斜率k,(2)直线直线OM的斜率的斜率kOM(3)|PQ|oxM(x0,y0)Q(x2,y2)P(x1,y1)y第八十八张,PPT共八十九页,创作于2022年6月感感谢谢大大家家观观看看第八十九张,PPT共八十九页,创作于2022年6月