欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    冶金过程动力学基础PPT课件.ppt

    • 资源ID:43675158       资源大小:3.57MB        全文页数:131页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    冶金过程动力学基础PPT课件.ppt

    关于冶金过程动力学基础第一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础第二张,PPT共一百三十一页,创作于2022年6月 冶金热力学可通过体系状态函数的改变,判断反应进行的可能性、方向性及最大限度。但反应进行的途径、机理及速度则是动力学解决的任务。微观动力学:据参加反应的物质的性质,从分子理论出发研究化学反应的机理和速度。宏观动力学:结合反应体系中的流体流动、传质、传热及反应器条件等宏观因素来研究反应的速度和机理。第二章第二章 冶金过程动力学基础冶金过程动力学基础第三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础 钢铁冶金过程中的反应是在高温、有流体流动、传热、传质等复杂状态下进行的多相反应。如炼钢过程中钢渣界面上元素的氧化反应由三个步骤或三个环节组成,组元由钢渣内部向界面的传质,界面化学反应、产物离开界面向钢渣内部传质。其中最慢的步骤为过程的限制性环节。通过分析影响反应速度的因素,可确定加速反应的措施,以实现控制冶金工艺、提高生产效率的目的。动力学研究的主要内容:研究反应构成环节(机理)、建立各环节及总体反应速率公式、分析影响反应速度的因素,建立加快翻印速度的措施。第四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础2.1多相化学反应速率多相化学反应速率化学反应的速率通常用某一时刻反应物或生成物的浓度对时间的变化率来表示。,C:体积摩尔浓度,:2.1.1化学反应速率的表示方法化学反应速率的表示方法第五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础 基元反应:化学反应的速率与反应物的浓度的若干次方成正比,且反应级数与反应物的计量系数相等。反应级数(n=0,1,2,3或分数)第六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础非基元反应:化学反应的速率与反应物的浓度的若干次方成正比,但反应级数与反应物的计量系数不相等。反应级数k:化学反应的速率常数,n不同k的单位不同,k=f(T)。作业:基元反应与非基元反应第七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础二、反应速率方程1.一级反应 ,k:单位s-1设时,则,第八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础3.反应半衰期半衰期:反应物浓度降到初始浓度的一半所需的反应时间,.,1.反应速率与反应物的浓度的一次方成正比。2.lnCt为一直线,斜率为-k。一级反应的特征:第九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础2.二级反应 设 ,k:单位设时,设时,第十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础 设二级反应的特征:1.反应速率与反应物的浓度的平方成正比。为一直线,斜率为k。2.3.反应半衰期第十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础3.n级反应 特征:为一直线,斜率为k。第十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础4.可逆反应的速率方程正反应速率:逆反应速率:净反应速率:第十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础 当反应达到平衡时:,:正、逆反应速率常数及平衡常数。第十四张,PPT共一百三十一页,创作于2022年6月特征:(1)(2)第二章第二章 冶金过程动力学基础冶金过程动力学基础第十五张,PPT共一百三十一页,创作于2022年6月例:试推导出FeO为CO还原反应:速率的微分及积分式。假定气流速度足够快,CO、CO2的界面浓度与相内浓度相同。已知此反应为一级可逆反应。解:正反应速率:逆反应速率:净反应速率:第二章第二章 冶金过程动力学基础冶金过程动力学基础第十六张,PPT共一百三十一页,创作于2022年6月由于消耗1molCO生成1molCO2,故反应达到平衡时:故:即:带入上式得到:第二章第二章 冶金过程动力学基础冶金过程动力学基础第十七张,PPT共一百三十一页,创作于2022年6月 :一级可逆反应的速率常数时,代入:故:分离变量积分:第二章第二章 冶金过程动力学基础冶金过程动力学基础第十八张,PPT共一百三十一页,创作于2022年6月5.多相化学反应的速率式 多相化学反应发生于相界面上,速率式中包含相界面积A(m2).一级反应:k:界面反应速率常数,A:相界面面积,m2;V:体系的体积,m3;:不可逆反应:,可逆反应:;。第二章第二章 冶金过程动力学基础冶金过程动力学基础第十九张,PPT共一百三十一页,创作于2022年6月2.1.22.1.2化学反化学反应应速率与温度的关系速率与温度的关系 ArreheniusArrehenius从实验中总结得到反应的速率常数k与温度T的关系式:k:速率常数;A:指数前因子;E:反应的活化能,第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十张,PPT共一百三十一页,创作于2022年6月若第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十一张,PPT共一百三十一页,创作于2022年6月 在多组元体系中,当其中某组元存在浓度差时,即发生因高浓度区域向低浓度区域的转移,直到浓度差消失为止。分子扩散:分子扩散:在浓度梯度作用下,物质分子由高浓度区向低浓度区定向迁移的物质传递过程。对对流流传传质质:在流体流动的体系中的物质传递,对流传质或紊流传质。由分子扩散和流体流动形成的物质迁移组成 传质现象从机理上可分为扩散传质和对流传质两类。扩散传质:扩散传质:在固体或静止流体中的传质,以分子扩散的方式进行。对流传质:对流传质:在流速较大的流体中的传质以分子扩散和对流传质两种方式进行。2.2 分子扩散与对流传质分子扩散与对流传质第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十二张,PPT共一百三十一页,创作于2022年6月1、稳态扩散 若在扩散层内各处物质的浓度不随时间而变化,浓度梯度为常数,没有物质的积累。1855年,A.Fick由大量实验结果总结出Fick第一定律:在扩散方向上的浓度梯度,D:扩散系数,A:扩散面积(与扩散方向垂直),。第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十三张,PPT共一百三十一页,创作于2022年6月二、非稳态扩散 当扩散层内物质的浓度随时间变化时,则浓度梯度部位常数,扩散层内有物质的积累。Fick第二定律:当组元在三维空间都有浓度梯度时,则组元向三个方向扩散:第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十四张,PPT共一百三十一页,创作于2022年6月如果在扩散层内有化学反应发生,则Fick第二定律为:n级化学反应速度;:初始与界面浓度;erf:误差函数(高斯误差函数)带入初始条件和边界条件,解微分方程可得:第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十五张,PPT共一百三十一页,创作于2022年6月例:在1273K用混合气体对低碳钢(%C=0.1)进行渗碳。气相成分为%CO=96,%CO2=4,钢件表面碳浓度%C=1.27,求渗碳6小时后钢件表面下0.310-2m出的碳浓度。已知Dc=310-10m2/s。解:P63图2-4已经绘出了的变化曲线。查图2-4得:第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十六张,PPT共一百三十一页,创作于2022年6月一、固体中的扩散 在 固 体 或 晶 体 中,原 子 扩 散 比 较 困 难,只 有 在 高 温 下,通 过 晶 格 空 位 或间隙进行迁移扩散,温度对扩散的影响较大,符合Arrhenius定律,扩散系数为2.2.22.2.2扩扩散系数散系数扩散系数D为单位浓度梯度下的扩散通量,单位:。D0:指数前因子;ED:原子扩散活化能。由Fick第一定律知不同的扩散过程机理及影响因素不同,扩散系数亦不同。第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础对于静止或流速较小不包括对流传质的液体中质点的扩散,通常认为与固体中的扩散类似,是由于空位或质点间隙而发生的扩散质点的迁移,其扩散系数为由于冶金熔体的温度比熔点稍高,因而X射线衍射证明其结构与固体相进。液体中质点的扩散系数与温度T、液体粘度及扩散质点的半径r有关。斯托克斯爱因斯坦公式:k:玻尔兹曼常数;r:扩散原子半径,m;液体粘度,二、液体中的扩散第二十八张,PPT共一百三十一页,创作于2022年6月三、气体中的扩散对于由A、B组元混合而成的气体,不论A在B中还是B在A中,其扩散系数相等,扩散系数为。据GillilandMaxwell半经验公式:第二章第二章 冶金过程动力学基础冶金过程动力学基础第二十九张,PPT共一百三十一页,创作于2022年6月 可见气体的扩散系数与成正比,与P成反比,表2-4(P65)列出了气体在273K、100kPa下的扩散系数,其它温度下的扩散系数可计算如下:分别为T及273K的扩散系数。:气体A及B的摩尔体积,:气体气体A及B的摩尔质量,P:混合气体的总压,Pa,:气体温度,第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十张,PPT共一百三十一页,创作于2022年6月。多孔介质中气体扩散与孔隙多少及扩散路径的曲折程度有关,据孔隙半径的大小分为两类。若孔隙的直径比气体分子平均自由程大得多,则与自由空间内气体的扩散系数完全相同;若气体分子的平均自由程比孔隙直径大得多,称为克努生扩散。Knudsen扩散:R:孔隙半径,m;T:温度,k;M:扩散气体分子的摩尔质量,(孔隙分布均匀)第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十一张,PPT共一百三十一页,创作于2022年6月考虑孔隙结构的曲折程度时,有效扩散系数计算按如下:D:气体在自由空间的扩散系数,:多孔介质的孔隙度,:迷宫系数(两点之间的直线距离与曲折距离之比;对于压实料坯,对于散料,第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础一、对流扩散(传质)方程 在流速较大的流体内,物质的扩散不仅包括有浓度梯度引起的分子扩散,还包括由流体流动引起的传质。扩散分子的运动和对流运动同时发生,称为对流扩散。对流扩散系数比分子扩散系数高几个数量级,。扩散通量:第一项为分子扩散通量,第二项为对流引起的扩散通量2.2.3 对流扩散对流扩散D:分子扩散系数,流体在x方向的对流分速度,:扩散组元浓度,J:传质通量,第三十三张,PPT共一百三十一页,创作于2022年6月对于三维扩散(对流传质方程):对于上述二阶偏微分方程求解c(x,y,z,t)浓度分布。需将初始条件、边界条件、流体流动的连续性方程、动量守恒方程连理求解,比解Fick第二定律复杂得多。(1)分子扩散项 对流扩散项第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基来计算传质通量。当流体在凝聚相表面附近流动时,则在流动边界层内的传质可计算如下:c:流体内部扩散组分的浓度,:凝聚相表面扩散组分的浓度,:对流传质系数,与流体速度、粘度、密度、组分扩散系数有关;上述对流传质方程需要在模型法的基础上求出传质系数J:传质通量,(对流传质方程)(2)第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础二、对流传质系数 (实验模型测定法)1.边界层理论 在湍流流体接近凝聚相界面的一层内,由于湍流脉动作用,流体内部无速度差存在。由于流体与相界面的摩擦阻力,在贴近相界面的流体薄膜内有很大的速度梯度,而相界面上的速度为零,流体内部的速度为u。速度边界层厚度:流体的运动粘度,:流动速度,求解对流传质系数需利用实验数据在模型法的基础上进行。第三十六张,PPT共一百三十一页,创作于2022年6月 流体内部的温度不同于界面温度,由于相界面附近的流体层内出现了温度梯度,成为温度边界层。温度边界层厚度:流体内部的浓度不同于界面浓度,在相界面附近的流体层内出现了浓度梯度,成为浓度梯度。浓度边界层:流体的热扩散系数(导温系数)。约为的10倍。第二章第二章 冶金过程动力学基础冶金过程动力学基础第三十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础如图为流体内沿扩散方向(x轴)的浓度分布。在x=0的界面处,扩散组分的浓度为在流体内部(xx1)扩散组分的浓度为c=c,则c发生变化的范围(由到c)则为浓度边界层 但实际过程中很难确定x1点的位置,但在界面处(x=0)浓度曲线成为一直线,故从x=0作曲线的切线交c=c直线与M点,对应的则为有效边界层厚度。第三十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础在x=0处,流体流速为“0”,故。在x=0处,(界面浓度不变)是稳定态扩散。第三十九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础据Fick第一定律:A:相界面积,m2;V:流体的体积,m3。第四十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础在高温下,界面化学反应速度非常快,等于反应平衡浓度,。分离变量积分:时,或故第四十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础,可求出传质系数或上式为流体内组元扩散的积分式,以作图,斜率为及有效边界层厚度之间。紊流气体中在紊流流体中一般为 ,为。第四十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础例题:熔渣与被碳饱和的铁水之间的脱硫反应为:实验温度为1873K,坩埚的转速为100r/min,铁水的初始含硫量S=0.80%。硫在铁水内的,硫在界面的平衡浓度为,铁水深度h=0.0234m,测得铁水S随时间变化如表2-5所示。计算铁水内的及解:第四十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础以作图,斜率为-0.033,即 作业:P97:10 第四十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 表面更新理论认为:流体有多个扩散组元浓度为C的体积元组成,它们在对流作用下从流体内部相界面迁移,到达界面时发生组元C的扩散。若则组元由界面向体积元内扩散;传质后该体积元离开界面,另一个体积元到达界面发生组元的扩散,这样通过体积元在界面上的更新,使界面浓度保持不变。2.表面更新理论若界面上组元C的浓度为 ,若则组元C由体积元内向相界面扩散。第四十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 设体积元在界面上停留的时间为t,距离为l,由于停留时间很短,使体积元内扩散层厚度远小于体积元厚度,扩散相当于一维半无限非稳态扩散过程。第四十六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 这样可得出传质系数为:体积元与相界面接触时间,s。对于一维半无限非稳态扩散,Fick第二定律的解是:第四十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础例:试利用表面更新理论模型导出气体从流体中流动时,气体表面的传质通量 公式。解:气体在流体中运动时,气泡与流体接触时间为 第四十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础3.量纲分析法 对流传质是一个包含动量、能量、质量传递的复杂现象,不象扩散传质那样容易处理,因为影响 的因素较多,常采用因此分析法。在因此分析法中得到一些无因次数(也称无量纲数)。首先介绍几个与对流传质系数计算有关的无因次量的物理意义。动量分子传递系数:热量分子传递系数:这三个系数有相同的因次:任两个分子传递系数之比为一个无因次量,称为准数。(kH:导热系数)质量分子传递系数:D第四十九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(1):施密特准数(Schmidt mumber)(表示流体的物理化学特征)(2):路易斯准数 (3):雷诺准数(Reynolds member)(表示流体流动特征)(4):谢伍德准数(Sherword mumber)(表示流体的传质特征)第五十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 因此分析法是一种对实验数据进行处理,获得经验公式或半经验公式的方法。此经验公式中的自变量和因变量均为无因次量。因此分析法建立的基础:假设体系中不同物理量之间的关系可用指数函数的乘积表示。写出函数与之变量的单位,确定指数间的关系。例:当气体流经特性尺寸为L的固体表面时,传质系数为下列参数的函数。(1)根据 定理,上式可写为(为无因次量,是常数)第五十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础带入各参数的单位:m的指数为:a+b+2c+2d-3e+f=0s的指数为:-a-b-c-d=0kg的指数为:e=06个未知数,3个方程求解,可用3个数表示另3个数:d=-a-b-c;e=0;f=a+b带入方程(1)中:第五十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础整理得:由于是一个无因次量,故括号内的每一项都是无因次量,称为准数。将C1、C2、C3组合可得到与 有关的准数。第五十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础据因此分析法,与传质过程有关的准数之间的关系,也存在指数函数性质:对于环流固体表面的气体:当Sc=1时,由实验得出将带入得:当时,实验得出:(环流球形物)(平板表面流动)其中k、a、b为常数,由模型试验确定。第五十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 例P74:在直径为7.710-2m的炉管中装有一层直径为1.2710-2m的氧化球团,在1089K及100kPa下,通过流量为8.9L/min的CO气体进行还原。假设球团表面气体的成分为%C0=95,%CO2=5,CO和CO2粘度分别为4.410-5及4.210-5Pas,CO的互扩散系数DCO=1.4410-4m2/S。试求CO的传质系数。解:这是环流固体表面的气体对流传质(环流球形物)可由Re、Sc求出Sh,然后求出第五十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础V:气体的摩尔体积;M:气体的摩尔质量,(1)第五十六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(2)(3)第五十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础作业P97:9(环流固体的对流传质)(5)(4)第五十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础4.旋转圆盘实验测定法(多用于固体在液体中的溶解研究)当圆盘物体在流体中高速旋转时,其圆盘表面为反应界面,远处流体垂直流向圆盘表面,附近流体随着圆盘旋转,发生对流传质,由动力学方程得:圆盘旋转的角速度(生产中常用圆柱体旋转式样)第五十九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础例:在1663K,用半径为0.77510-2m的烧结白云石圆柱体在转炉渣中做旋转实验,测定白云石中MgO溶解的传质系数。熔渣的粘度0.1PaS,密度3115kg/m3,MgO的扩散系数1.010-9m2/s,圆柱体旋转速度360r/min,试求MgO在熔渣中的传质系数。解:第六十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础第六十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 当气体与液体或固体相接触时,气体分子将被吸附到液体或固体表面上,这是由于固体或液体表面的质点处于不稳定的力场当中,具有多余的能量,通过吸引气体分子来达到能量的平衡。气体吸附分为物理和化学吸附两种类型。物物理理吸吸附附:气体分子在范德华力(分子引力)的作用下被吸附到固体或 液体的表面。化学吸附:化学吸附:气体分子在化学键力的作用下被吸附到固体或液体的表面。比较:比较:2.3吸附反应动力学吸附反应动力学(1)物理吸附作用力小,吸附过程释放的热量少:110kcal/mol,化学 吸附作用力大,吸附过程释放的热量多:10150kcal/mol。第六十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(2)分子作用力范围大,物理吸附可能是多层气体吸附,化学吸附作用力范围小,在10-10m范围内,化学吸附可能是单层媳妇,每摩尔气体分子吸附的活化能在80kJ以上;(3)物理吸附与气体冷凝过程相似,媳妇活化能很低,媳吸附速度很快,化学吸附与化学反应相似,吸附活化能较高(80kJ/mol),吸附速度很慢;(4)物理吸附只在气体的沸点附近才很明显,在沸点以上吸附量忽略不计。化学吸附之在高温下很明显。一般物理吸附可用于测定多孔固体的表面积及其孔隙分布和孔隙度。化学吸附是组成气液、气固相反应的重要环节,反应常包括反应物在相界面上的吸附及产物从相界面的脱附。作业作业:比较物理吸附和化学吸附第六十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础2.3.1吸附基本控制方程(吸附基本控制方程(Langmuir等温方程式)等温方程式)当气体A与固体S反应形成气体B,形成单层化学吸附时:A+Sa=AS B+Sa=BS Sa固体单位面积尚未被气体占据的活性点;AS固体单位面积被气体占据的活性点;BS固体单位面积被气体占据的活性点;固体单位面积的活性点总数为:Sa+AS+BS固体单位面积上气体A占据的面积分数:第六十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础固体单位面积上气体B占据的面积分数:固体单位面积上未被气体A、B占据的面积分数:当吸附反应达到平衡时,吸附反应平衡常数:PA、PB:气体的分压(Pa)第六十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础联立kA、kB求解,可得到朗阁谬尔吸附等温式(Langmuir):,吸附速率正比于被A、B所占有的面积分数QA、QB:vA=kAQA vB=kBQB kA、kBA、B吸附反应速率常数。第六十六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础2.3.2 化学反应为限制性环节的速率式化学反应为限制性环节的速率式 气液、气固相反应过程,包括气体反应物及产物在固体或液体表面的吸附于脱附,化学反应速率可由Langmuir等温式导出:反应初始产物B的分压很小,不考虑B的脱附:第六十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础吸附反应的级数与P有关:时,为零级反应 气固、气液相反应机理:由反应气体A的吸附、界面化学反应、产物气体的脱附3个环节组成。实验表明,吸附、脱附速率较快,易达到平衡,界面化学反应是限制性环节。时,为一级反应例:的还原反应第六十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础机理:吸附 界面化学反应界面化学反应速率与被H2吸附的活性点的面积分数成 正比脱附第六十九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础反应初期:(1):界面化学反应速率常数;由(1)得:利用测定出的作图,是一条直线,斜率为,截距为,可确定常数:H2吸附反应平衡常数第七十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础由(1)可知:是“0”级反应,是一级反应。在高炉内,可认为H2还原氧化铁是一级反应。例P77:在273K不同压力下测得H2还原赤铁矿的速率如表2-7,试求矿石还原的速率式。第七十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基础冶金过程动力学基础 在上述吸附、界面化学反应、脱附三个环节中,吸附也可能成为速率的限制性环节。例如,钢夜中氮的溶解过程。2.3.3吸附反应为限制性环节的速率式吸附反应为限制性环节的速率式(1)高温下氮气的离解:机理:(2)氮气的吸附第七十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 当高温下氮气离解速度比吸附速度快时,则氮气在钢夜表面的吸附成为溶解过程的限制环节。可见,氮在钢夜中的溶解速率与 及钢夜表面上未被N(g)占据的面积(1-QN)成正比。当表面活性大于N(g)的O(g)出现时,氮的溶解速率降低,使N(g)的吸附活化能由105 KJ/mol提高到264KJ/mol。吸附速率:第七十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础2.4.1 反应过程动力学方程的建立的原则反应过程动力学方程的建立的原则2.4 反应过程动力学方程的建立反应过程动力学方程的建立 高温多相反应,高温下实验条件不易控制,参数难以准确测量,实验精度低,重现性差。不同条件得出不同的结论。反应由传质、吸附、界面化学反应等环节组成,传质与边界层厚度有关,反应与浓度、温度有关。一、冶金动力学研究的复杂性反应界面性质:(1)界面类型:气固、气液、液液、液固、固固5类;(2)界面积:当形成气泡液滴、细小固体颗粒时,界面积增大,反应速 度加快;第七十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(3)界面几何形状:固体界面不规则,形状复杂,比表面积大,速率快。化学反应的推动力:反应体系的实际状态和平衡状态的差距会产生推动力,它相当于水流动的水位差、电流动的电位差。化学反应各环节的阻力,相当于流体流动的闸门或管道阻力,或电路的电阻。阻力等于个步骤的阻力之和。反应速率等于推动力和总阻力之比。这种 比喻对于处理复杂冶金动力学问题有很大的启发。二、化学反应的推动力和阻力对于传质步骤阻力为 ,界面化学反应阻力为。总反应的第七十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 反应限制性环节的确定比较困难,一般一级反应活化能与扩散活化能相当,扩散为限制性环节,二级或高级反应,反应活化能大,界面反应为限制性环节。三、限制性环节和局部平衡 限制性环节:反应各步骤中阻力最大的一步,其阻力近似等于反应的总阻力。对于阻力较小的其他步骤,可近似按平衡状态处理。对于传质过程,认为边界层层厚度为“0”,相内各点浓度相同。对于界面化学反应过程,认为达到了平衡状态,界面上各组分浓度等于平衡浓度。第七十六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 许多冶金反应过程,不存在唯一的限制性环节或限制性环节可变,这是常用准稳态来处理速率问题。即:近似认为串联反应进行一段时间以后,各步骤经过相互调整,达到了速率相等,这是反应中间产物的浓度和体系中各点的浓度均相互稳定。四、准稳态处理方法 反应物或生成物存在与不同的相中,反应发生于相界面上的化学反应成为多相反应。五、多相反应速率方程的导出方法(1)反应物分别由两相中向相界面传质;常由以下环节组成:第七十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 研究多相反应的动力学时,首先确定反应过程的组成环节及其速率式,然后据准稳态原理导出反应过程的速率方程,并据外界条件确定反应的限制性环节及其速率式。最后,提出加快反应速率的措施。(2)在相界面进行化学反应;(3)生成物由相界面分别向两相中传质。(1)速率方程的导出:在多相反应过程中,当反应物的传质速率、界面的消耗速率、生成物的传质速率相等时,整个过程处于准稳态,总反应的速率与各环节的速率相等,利用这个关系,可导出多相反应的速率方程。第七十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(2)反应过程的速率范围:反应各环节的 与 ,决定了反应的速率特征或速率范围。当界面化学反应为限制性环节时,传质达到平衡,界面浓度与相内浓度相等,称过程位于动力学范围之内;当传质为限制性环节时,界面化学反应达到平衡,相界面浓度等于平衡浓度,称过程处于扩散范围;当界面反应于传质速率相近时,反应同时受到两者限制,称过程处于混合限制范围。由于 和 与外界条件有关,因而限制性环节也会随外界条件的改变而改变。第七十九张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(3)反应速率的影响因素:D与k与温度的关系:,物流的特性:随着流速及搅拌强度的增大,k增大,变薄,当传质为限制性环节时,过程速率加快。但界面反应为限制性环节时,提高流速或增大对流强度对速率无影响。温度:由于,所以温度对k的影响大于对D的影响。高温下,低温下,界面化学反应为过程的限制性环节;,传质为过程的限制性环节。第八十张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(4)过程速率限制性环节的确定 过程速率:A与温度无关的常数;Q界面反应或扩散活化能;以作图,直线斜率,可求得活化能Q。一般对于二级或高级反应,Q值很大(1530kal/mol),为界面反应的活化能,界面反应为限制性环节。对于一级反应,活化能较小(1015kal/mol),Q为扩散活化能,传质为限制性环节,当 直线有折点时,发生了限制性环节的转变。此外,当反应速率随搅拌强度及流体流速而增加时,可判断传质为限制性环节。第八十一张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础例:对于反应 界面反应:传质:第八十二张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础达准稳态:联立求解:第八十三张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础2.4.2 液液液相反应的动力学模型液相反应的动力学模型双膜理论双膜理论 双膜传质理论是刘易斯和惠特曼与1924年提出的,这个理论是能斯特所提出的固体溶解理论和边界层理论的进一步发展。要点:(1)在两项(气液、液液)的相界面两侧的每一个相内都有一层边界薄膜(气膜、液膜),这样膜产生了物质从相内到界面的基础传质阻力,存在浓度梯度;(2)在两层膜之间的界面上,处于动态平衡状态(准稳定态);(3)组元在每相内的传质通量J与浓度差或分压成正比;对于液体:对于气体:,第八十四张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础 双膜理论评价:认为有双重传质阻力存在的概念有很大的实用性,认为双膜内液体静止不动及两相传质互不影响不正确。(4)虽然在液体或气体内有湍流,但薄膜中的流体是静止的,不受流体内部流动状态的影响。各相中的传质相互独立,互不影响。第八十五张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(3)产物C向相内的传质:据准稳态原理:(1)反应物CI向相界面的传质:(2)界面化学反应:机理:第八十六张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础(1)第八十七张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础:总反应速率常数。其中:称为容量速率常数。(2)第八十八张,PPT共一百三十一页,创作于2022年6月第二章第二章 冶金过程动力学基冶金过程动力学基第二章第二章 冶金过程动力学基础冶金过程动力学基础对式(1)积分求出浓度CI与时间t的关系式。式(1)中

    注意事项

    本文(冶金过程动力学基础PPT课件.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开