高中数学一轮复习最基醇点系列考点5导数与函数的极值最值.doc
-
资源ID:44070704
资源大小:379KB
全文页数:6页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学一轮复习最基醇点系列考点5导数与函数的极值最值.doc
专题5 导数与函数的极值、最值导数与函数的极值、最值1函数的极小值函数yf(x)在点xa的函数值f(a)比它在点xa附近的其他点的函数值都小,f(a)0,而且在点xa附近的左侧f(x)0,右侧f(x)0,则点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值2函数的极大值函数yf(x)在点xb的函数值f(b)比它在点xb附近的其他点的函数值都大,f(b)0,而且在点xb附近的左侧f(x)0,右侧f(x)0,则点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值3函数的极值极小值点和极大值点统称为极值点,极小值和极大值统称为极值.知图判断函数极值情况的策略知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴交点的横坐标为函数的极值点例设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)解析由图可知,当x2时,f(x)0;当2x1时,f(x)0;当1x2时,f(x)0;当x2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值答案 D1.已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值解(1)由题意知f(x)(xk1)ex.令f(x)0,得xk1.f(x)与f(x)的情况如下:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,)2.已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值(1)求a,b,c的值;(2)求yf(x)在3,1上的最大值和最小值解(1)由f(x)x3ax2bxc,得f(x)3x22axb.当x1时,切线l的斜率为3,可得2ab0,当x时,yf(x)有极值,则f0,可得4a3b40,由,解得a2,b4.由于切点的横坐标为1,所以f(1)4.所以1abc4,得c5.(2)由(1)可得f(x)x32x24x5,f(x)3x24x4.令f(x)0,解得x12,x2.当x变化时,f(x),f(x)的取值及变化情况如下表所示:x3(3,2)21f(x)00f(x)8134所以yf(x)在3,1上的最大值为13,最小值为.3.(2013·新课标全国卷)已知函数f(x)x3ax2bxc,下列结论中错误的是()Ax0R,f(x0)0B函数yf(x)的图象是中心对称图形C若x0是f(x)的极小值点,则f(x)在区间(,x0)单调递减D若x0是f(x)的极值点,则 f(x0)0解析:选C因为函数f(x)的值域为R,所以一定x0R,f(x0)0,选项A中的结论正确;函数f(x)的解析式可以通过配方的方法化为形如(xm)3n(xm)h的形式,通过平移函数图象,函数的解析式可以化为yx3nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,选项B中的结论正确;由于三次函数的三次项系数为正值,故函数如果存在极值点x1,x2,则极小值点x2x1,即函数在到极小值点的区间上是先递增后递减的,所以选项C中的结论错误;根据导数与极值的关系,显然选项D中的结论正确1.若函数f(x)x32cx2x有极值点,则实数c的取值范围为()A.B.C.D.解析:选D若函数f(x)x32cx2x有极值点,则f(x)3x24cx10有根,故(4c)212>0,从而c>或c<.故实数c的取值范围为,.2.已知函数f(x)的定义域为(a,b),导函数f(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A1 B2 C3 D4解析:选B由函数极值的定义和导函数的图象可知,f(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x0不是函数f(x)的极值点,其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个3.已知函数f(x)x(xm)2在x1处取得极小值,则实数m()A0 B1 C2 D33.函数f(x)ln xx在区间(0,e上的最大值为()A1e B1 Ce D0解析:选B因为f(x)1,当x(0,1)时,f(x)>0;当x(1,e时,f(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e,所以当x1时,f(x)取得最大值ln 111.4.已知函数f(x)(2xx2)ex,则()Af()是f(x)的极大值也是最大值Bf()是f(x)的极大值但不是最大值Cf()是f(x)的极小值也是最小值Df(x)没有最大值也没有最小值5.函数f(x)xsin xcos x在上的最大值为_解析:因为f(x)sin xxcos xsin xxcos x,所以f(x)0在x上的解为x.又f,f,f()1,所以函数f(x)xsin xcos x在上的最大值为.答案:6.已知函数f(x)xaln x(aR)(1)当a2时,求曲线yf(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值解:由题意知函数f(x)的定义域为(0,),f(x)1.(1)当a2时,f(x)x2ln x,f(x)1(x0),因为f(1)1,f(1)1,所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.(2)由f(x)1,x0知:当a0时,f(x)0,函数f(x)为(0,)上的增函数,函数f(x)无极值;当a0时,由f(x)0,解得xa.又当x(0,a)时,f(x)0;当x(a,)时,f(x)0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值aaln a,无极大值7.已知函数f(x)ax3bxc在x2处取得极值为c16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在3,3上的最小值 (2)由(1)知f(x)x312xc,f(x)3x212.令f(x)0,得x12,x22.当x(,2)时,f(x)>0,故f(x)在(,2)上为增函数当x(2,2)时,f(x)<0,故f(x)在(2,2)上为减函数;当x(2,)时,f(x)>0,故f(x)在(2,)上为增函数由此可知f(x)在x12处取得极大值f(2)16c,在x22处取得极小值f(2)c16.由题设条件知16c28,得c12,此时f(3)9c21,f(3)9c3,f(2)c164,因此f(x)在3,3上的最小值为f(2)4._6