新课标2018届高考数学二轮复习专题六直线圆圆锥曲线专题能力训练17椭圆双曲线抛物线理.doc
专题能力训练17椭圆、双曲线、抛物线能力突破训练1.(2017全国,理5)已知双曲线C:=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆=1有公共焦点,则C的方程为()A.=1B.=1C.=1D.=12.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若<0,则y0的取值范围是()A.B.C.D.3.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.84.已知双曲线=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.=1B.=1C.=1D.=15.设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若=m+n(m,nR),且mn=,则该双曲线的离心率为()A.B.C.D.6.双曲线=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=. 7.(2017全国,理15)已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若MAN=60°,则C的离心率为.8.如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.9.如图,动点M与两定点A(-1,0),B(1,0)构成MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求的取值范围.10.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|=·()+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB分别交于点D,E,求QAB与PDE的面积之比.思维提升训练11.(2017全国,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.1012.(2017全国,理16)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M为FN的中点,则|FN|=. 13.(2017山东,理14)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为. 14.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(1)求动点P的轨迹C1的方程;(2)设M,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求MPQ面积的最大值.15.已知动点C是椭圆:+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B是端点),的最大值是.(1)求椭圆的方程;(2)已知椭圆的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.参考答案专题能力训练17椭圆、双曲线、抛物线能力突破训练1.B解析由题意得,c=3.又a2+b2=c2,所以a2=4,b2=5,故C的方程为=1.2.A解析由条件知F1(-,0),F2(,0),=(-x0,-y0),=(-x0,-y0),-3<0.=1,=2+2.代入得,-<y0<3.B解析不妨设抛物线C的方程为y2=2px(p>0),圆的方程为x2+y2=R2.因为|AB|=4,所以可设A(m,2).又因为|DE|=2,所以解得p2=16.故p=4,即C的焦点到准线的距离是4.4.D解析根据对称性,不妨设点A在第一象限,其坐标为(x,y),于是有则xy=b2=12.故所求双曲线的方程为=1,故选D.5.C解析在y=±x中令x=c,得A,B,在双曲线=1中令x=c得P当点P的坐标为时,由=m+n,得由(舍去),e=同理,当点P的坐标为时,e=故该双曲线的离心率为6.2解析四边形OABC是正方形,AOB=45°,不妨设直线OA的方程即双曲线的一条渐近线的方程为y=x=1,即a=b.又|OB|=2,c=2a2+b2=c2,即a2+a2=(2)2,可得a=2.7解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,MAN=60°,|AP|=b,|OP|=设双曲线C的一条渐近线y=x的倾斜角为,则tan=又tan=,解得a2=3b2,e=8.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故解得因此,点B的坐标为(2)由(1)知|AP|=t和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=设PAB的面积为S(t),所以S(t)=|AP|·d=9.解(1)设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x1,且x-1.此时,MA的斜率为,MB的斜率为由题意,有=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x±1).(2)由消去y,可得3x2-2mx-m2-4=0.对于方程,其判别式=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m1.设Q,R的坐标分别为(xQ,yQ),(xR,yR),则xQ,xR为方程的两根,因为|PQ|<|PR|,所以|xQ|<|xR|.因为xQ=,xR=,且Q,R在同一条直线上,所以=1+此时>1,且2,所以1<1+<3,且1+,所以1<<3,且综上所述,的取值范围是10.解(1)由题意可知=(-2-x,1-y),=(2-x,1-y),=(x,y),=(0,2).|=()+2,=2y+2,x2=4y.曲线C的方程为x2=4y.(2)设Q,则SQAB=2=2y=,y'=x,kl=x0,切线l的方程为y-x0(x-x0)与y轴交点H,|PH|=1-直线PA的方程为y=-x-1,直线PB的方程为y=x-1,由得xD=由得xE=,SPDE=|xD-xE|·|PH|=1-,QAB与PDE的面积之比为2.思维提升训练11.A解析方法一:由题意,易知直线l1,l2斜率不存在时,不合题意.设直线l1方程为y=k1(x-1),联立抛物线方程,得消去y,得x2-2x-4x+=0,所以x1+x2=同理,直线l2与抛物线的交点满足x3+x4=由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=+4=+82+8=16,当且仅当k1=-k2=1(或-1)时,取得等号.方法二:如图所示,由题意可得F(1,0),设AB倾斜角为作AK1垂直准线,AK2垂直x轴,结合图形,根据抛物线的定义,可得所以|AF|·cos+2=|AF|,即|AF|=同理可得|BF|=,所以|AB|=又DE与AB垂直,即DE的倾斜角为+,则|DE|=,所以|AB|+|DE|=16,当=时取等号,即|AB|+|DE|最小值为16,故选A.12.6解析设N(0,a),由题意可知F(2,0).又M为FN的中点,则M因为点M在抛物线C上,所以=8,即a2=32,即a=±4所以N(0,±4).所以|FN|=6.13.y=±x解析抛物线x2=2py的焦点F,准线方程为y=-设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1+y2+=y1+y2+p=4|OF|=4=2p.所以y1+y2=p.联立双曲线与抛物线方程得消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2=p,所以所以该双曲线的渐近线方程为y=±x.14.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=2>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2,2c=2.动点P的轨迹C1的方程为=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)y=2tx-t2.联立方程组消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有而|PQ|=|x1-x2|=,点M到PQ的高为h=,由SMPQ=|PQ|h代入化简,得SMPQ=,当且仅当t2=10时,SMPQ可取最大值15.解(1)设点C的坐标为(x,y),则+y2=1.连接CG,由,又G(0,2),=(-x,2-y),可得=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y-1,1.因为a>1,所以当y=-1,即1<a3时,取y=-1,得有最大值-(a-1)+4+a+,与条件矛盾;当y=>-1,即a>3时,的最大值是,由条件得,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足=1,=1,两式相减,整理,得=-=-,从而直线PQ的方程为y-y0=-(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,所以2x0-=5>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=(x-x0),将点M(m,0)代入得-y0=(m-x0),得m=x0,从而m- 13 -