高中数学破题致胜微方法双曲线的参数方程及应用二利用双曲线的参数方程求最值.doc
-
资源ID:44074008
资源大小:112KB
全文页数:5页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学破题致胜微方法双曲线的参数方程及应用二利用双曲线的参数方程求最值.doc
二 利用双曲线的参数方程求最值今天我们研究利用双曲线的参数方程求最值.已知双曲线的标准方程,则可以将双曲线的方程改写成参数方程,于是双曲线上的点的坐标写成参数形式,把所求问题转化为三角函数问题.通过例题来看.例1:已知在双曲线上,求到点的距离的最小值.有最小值为.注意:1.中心在原点,坐标轴为对称轴的双曲线的参数方程有以下两种情况:焦点在轴上的双曲线:(为参数).焦点在轴上的双曲线:(为参数).以上的,且.2.称为双曲线的离心角,注意离心角的几何意义.3.双曲线上任意点的坐标可设为.4.注意:.例2:已知圆O:上一点P与双曲线上一点Q,求P,Q两点距离的最小值.解:设双曲线上点的坐标为,先求圆心到双曲线上点的最小距离:,当,即时,.总结:1.如果双曲线方程是标准方程,利用三角恒等式,写出双曲线的参数方程. 2.注意中心在原点,坐标轴为对称轴的双曲线的参数方程有两种情况:双曲线上任意点的坐标可设为,双曲线上任意点的坐标可设为.3.将所求最值问题转化为求三角函数的值域,从而得出最值.练习题:1.求点到双曲线最小距离.2.已知点,B为双曲线上的动点,求的最小值.3. 已知双曲线C: ,P是C上的任意点.()求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;()设点A的坐标为(3,0),求|PA|的最小值.练习题解析:1.求点到双曲线最小距离.令,整理得,所以,所以,解得,所以.所以点到双曲线最小距离是.2.已知点,B为双曲线上的动点,求的最小值.解:设双曲线上点的坐标为,当,即时,.3. 已知双曲线C: ,P是C上的任意点.()求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;()设点A的坐标为(3,0),求|PA|的最小值.5