三元材料总结7.docx
三元材料总结7在自然界中,锂元素是最轻的金属,它的原子量为6.94g/mol,=0.53g/cm-3,电化学当量最小,为0.26 g·Ah-1,标准电极电位最负,为-3.045 V,锂元素的这些特点确定了它是一种具有很高比能量的材料。 层状的Co02,其理论容量为274 mAhg,实际容量在140155 mAhg。其优点为:工作电压高,充放电电压平稳,适合大电流放电,比能量高,循环性能好。缺点是:实际比容量仅为理论容量的50左右,钴的利用率低,抗过充电性能差,在较高充电电压下比容量快速降低。另外,再加上钴资源匮乏,价格高的因素,因此,在很大程度上削减了钻系锂离子电池的运用范围,尤其是在电动汽车和大型储备电源方面受到限制。 镍钴锰三元复合正极材料探讨工作中面临的问题和不足 (1)合成工艺不成熟,工艺困难。由于世界各国对于复合正极材料的探讨最近几 年才起先,且材料中的Ni2+极难氧化成Ni3+,锰离子也存在多种氧化价态,因而合成层状结构的正极材料较为困难,尚未探讨出最佳的合成工艺。由于大量掺入过渡金属元素等因素,复合正极材料的合成工艺相对困难,需经过长时间的煅烧,并且大多只能在氧气气氛中,温度高于900的条件下合成出具有优异电化学性能的复合正极材料,这对于该材料的工业化生产带来了很大的局限性。 (2)忽视了镍钴锰三元复合正极材料合成过程中前驱体的探讨。由于目前合成复 合正极材料均需煅烧,而国内外普遍采纳干脆市售的、Ni-H电池及陶瓷行业专用的镍化物、钴化物和锰化物作为煅烧原料进行合成,仅考虑原料的化学组成,而未留意到煅烧前驱体的种类和相关性能对复合正极材料的结构和电化学性能产生的巨大影响。 目前开发高性能、低成本的新型锂离子电池正极材料的探讨思路主要有: (1)充分综合钴酸锂良好的循环性能、镍酸锂的高比容量和锰酸锂的高平安性及低成本等特点,利用分子水平混合、掺杂、包覆和表面修饰等方法合成镍钴锰等多元素协同的复合嵌锂氧化物; (2)高平安性、价廉、绿色环保型橄榄石结构的LiMPO4 (M=Fe、Mn、V等)的改性和应用; (3)通过对传统的钴酸锂、镍酸锂和锰酸锂等正极材料进行改性、掺杂或修饰,以改善其理化指标和电化学性能。其中利用具有多元素过渡金属协同效应的镍钴锰等复合嵌锂氧化物,因其良好的探讨基础及可预见的应用前景而成为近年备受关注的焦点之一。 锂离子电池正极材料应达到的要求: 锂离子电池正极材料一般均采纳嵌入化合物,主要是过渡金属氧化物,一方面,过渡金属存在混合价态,电子导电性比较志向;另一方面不易发生歧化反应。性能优良的锂离子电池正极材料应当具有以下几个方面的性能: (l)正极材料中要有丰富的锂存在,这样才能够有大量的锂进行可逆嵌入和脱嵌反应,就可以使电池的容量得到提高。在锂离子脱嵌时电极反应的自由能改变不大,以保证电池充放电电压平稳。 (2)在进行嵌入/脱嵌过程中,锂离子要具有良好的嵌入和脱嵌可逆性,并且在这个过程中正极材料的结构应当改变很少,这样有利于提高锂离子电池的循环性能,具有大量的界面结构和表观结构,有利于增加嵌锂的空间位置,提高嵌锂容量。 (3)正极材料需具有大孔径隧道结构,以便锂离子在“隧道”中有较大的扩散系数和迁移系数,并具有良好的电子导电性和离子导电性,这样可削减极化,供应最大工作电流。 (4)作为正极材料的嵌入化合物,应当与电解液尽可能的少反应或者不反应,彼此间的化学相容性要好,在整个充放电过程中电化学稳定性高,并且与电解质 保持良好的热稳定性,以保证工作的平安。 (5)过渡金属离子在嵌入化合物中应具有较高的氧化还原电位,从而使电池的输出电压高。氧化还原电位随锂离子的改变尽可能少,这样电池的电压不会发生显著地改变,可保持较平稳的充电和放电。 (6)电解液的稳定电位区间大于电池的应用电位区间。 (7)在产品的产业化方面,正极材料应当具备原材料简单获得,价格相对低廉,对环境无污染,能量密度高,易于制作成各种形态的电极结构,提高锂离子电池的性能价格比。 三元材料LiNi1/3Co1/3Mn1/3O2的发展: 近年来,为应对汽车工业迅猛发展带来的诸如环境污染、石油资源急剧消耗等负面影响,各国都在主动开展采纳清洁能源的电动汽车EV以及混合动力电动车HEV的探讨。其中作为车载动力的动力电池成为EV和HEV发展的主要瓶颈。 商业化的锂离子电池主要采纳LiCoO2作为正极材料,LiCoO2存在平安性和耐过充性问题,Co属于稀有资源,价格昂贵,且金属钴简单对环境造成污染。 而LiNiO2的稳定性差,简单引起平安问题,需在氧气气氛下合成,并且简单发生阳离子混排和生成非化学计量结构化合物。锰系正极材料价格低廉,资源丰富,分布广泛,其中层状LiMnO2是一种热力学不稳定材料,容量虽高,但是在充放电过程中层状结构会向尖晶石型结构转变,导致比容量衰减快,电化学性能不稳定。LiMn2O4在循环过程中简单发生晶型转变以及锰离子的溶解和Jahn-Teller效应,导致电池容量衰减。LiFePO4可称为零污染正极材料,由于其在价格便宜和高平安性方面的优势,而倍受重视,近年来,该材料得到广泛探讨和应用,但该材料电导率低,且振实密度小,因而,其应用领域依旧受到很大限制。 综合LiCoO2,LiNiO2,LiMnO2三种锂离子电池正极材料的优点,三元材料的性能好于以上任一单一组分正极材料,存在明显的协同效应,被认为是最有应用前景的新型正极材料。通过引入Co,能够削减阳离子混合占位,有效稳定材料的层状结构,降低阻抗值,提高电导率。引入Ni,可提高材料的容量。引入Mn,不仅可以降低材料成本,而且还可以提高材料的平安性和稳定性。三元材料可以根据不同比例,由镍钴锰三种金属元素组成复合型过渡金属氧化物,用通式LiNi1-x-yCoxMnyO2来表示。目前比较普遍的做法是将Ni/Mn两种金属元素的摩尔比固定为1:1,以维持三元过渡金属氧化物的价态平衡,然后再调整它们与Co元素的比例,在平衡性能和成本的基础上,优化组成。现在文献中最常见的组成是LiNi1/3Co1/3Mn1/3O2三元正极材料,此外还有LiNi2/5Co1/5Mn2/5O2 ,LiNi3/8Co2/8Mn3/8O2等。 作为一类具有三元协同效应的功能材料,Ni、Co、Mn的计量比对该材料的合成及性能影响显著。一般来说,Ni的存在能使LiNixCoyMn1-x-yO2的晶胞参数c和a值分别增加,同时c/a值减小,晶胞体积相应增大,有助于提高材料的可逆嵌锂容量。但过多Ni2+的存在又会因为与Li+发生位错现象而使材料的循环性能恶化。Co能有效地稳定复合物的层状结构并抑制3a和3b位置阳离子的混合,即减小Li层与过渡金属层的阳离子混合,从而使锂离子的脱嵌更简单,并能提高材料的导电性和改善其充放电循环性能;但随Co的比例增大,晶胞参数中的c和a值分别减小,c/a值反而增加,使得晶胞体积变小,导致材料的可逆嵌锂容量下降。而Mn的引入除了大幅度降低成本外,还能有效地改善材料的平安性能,但Mn的含量太高则简单出现尖晶石相而破坏材料的层状结构。 目前,镍钴锰三元正极材料的探讨主要集中在材料的合成以及电化学性能与结构的关系上。在实际电池中,正极材料颗粒的形貌、粒径分布、比表面积及振实密度等物性特征对材料的加工性能及电池的综合电性能影响很大,为了拓宽锂离子电池的应用范围,尤其是将三元材料应用于对平安性、循环性以及倍率特性要求苛刻的动力电池上,高密度、粒径分布匀称的球形三元材料的制备已经成为探讨的热点,而如何在保证其电化学性能的前提下提高其振实密度则是三元材料走向大规模应用的关键。 预料到2015年和2020年我国车用和储能锂离子电池将达到如下目标(表l,2),大规模应用于电动交通、智能电网等领域,进一步促进新能源产业的快速发展。 三元材料LiNi1/3Co1/3Mn1/3O2的结构特点: LiNi1/3Co1/3Mn1/3O2正极材料具有与LiCoO2相像的单一的基于六方晶系的-NaFeO2型层状岩盐结构,空间点群为R3m。锂离子占据岩盐结构(111)面的3a位,过渡金属离子占据3b位,氧离子占据6c位,每个过渡金属原子由6个氧原子包围形成MO6八面体结构,而锂离子嵌入过渡金属原子与氧形成的Ni1/3Co1/3Mn1/3O层。因为二价镍离子的半径(0.069nm)与锂离子的半径(0.076nm)相接近,所以少量镍离子可能会占据3a位,导致阳离子混合占位状况的出现,而这种混合占位使得材料的电化学性能变差。通常在XRD中,将(003)/(104)峰的强度比以及(006)/(012)和(018)/(110)峰的分裂程度作为阳离子混 合占位状况的标记。一般状况下,(003)/(104)峰的强度比高于1.2,且(006)/(012)和(018)/(110)峰出现明显分裂时,层状结构明显,材料的电化学性能优良。LiNi1/3Co1/3Mn1/3O2的晶胞参数a=2.8622Å、c=14.2278 Å。在晶格中镍、钴、锰分别以+2、+3、+4价存在,同时也存在少量的Ni3+和Mn3+,在充放电过程中,除了有Co3+/4+的电子转移外,还存在Ni2+/3+和Ni3+/4+的电子转移,这也使得材料具有了更高的比容量。Mn4+只是作为一种结构物质而不参加氧化还原反应。Koyama等提出2个描述LiNi1/3Co1/3Mn1/3O2晶体结构模型,即具有3×3R30°型超结构Ni1/3Co1/3Mn1/3层的困难模型,晶胞参数a=4.904 Å,c=13.884 Å,晶格形成能为-0.17eV和CoO2、NiO2和MnO2层有序积累的简洁模型,晶格形成能为+0.06eV。因此,在合适的合成条件下,完全可以形成第一种模型,这种晶型在充放电过程中可以使晶格体积改变达到最小,能量有所降低,有利于晶格保持稳定。 Ni1/3Co1/3Mn1/3超晶格型结构模型 LiNi1/3Co1/3Mn1/3O2有序积累简模型 三元材料LiNi1/3Co1/3Mn1/3O2的电化学性能及热稳定性 LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料,具有较高的锂离子扩散实力,理论容量达278mAh/g,在充电过程中,在3.6V4.6V之间有两个平台,一个在3.8V左右,另一个在4.5V左右,主要归因于Ni2+/Ni4+和Co3+/Co4+2个电对,且容量可达250 mAh/g,为理论容量的91%。在2.3V4.6V电压范围内,放电比容量为190 mAh/g,100次循环后,可逆比容量比190 mAh/g还要多。在2.8V4.3V、2.8V4.4V和2.8V4.5V电位范围内进行电性能测试,放电比容量分别为159 mAh/g、168 mAh/g和177 mAh/g.且在不同温度下(55、75、95)和不同倍率放电时充放电,材料的结构改变均较小,具有良好的稳定性,高温性能良好,但低温性能有待改进。 锂离子电池的平安性始终都是商业化的一个重要衡量标准,在充电状态下与电解液的热效应是正极材料是否适用于锂离子电池的关键。 DSC测试结果表明,充电后的LiNi1/3Co1/3Mn1/3O2在250350未发觉尖峰,LiCoO2在160和210有2个放热尖峰,LiNiO2在210有一个放热尖峰。三元材料在这个温度范围内也有一些放热和吸热反应,但反应要温柔得多。 三元材料LiNi1/3Co1/3Mn1/3O2的制备技术有哪些: 正极材料微观结构的改善和宏观性能的提高与制备方法密不行分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。 固相合成法:一般以镍钴锰和锂的氢氧化物或碳酸盐或氧化物为原料,按相应的物质的量配制混合,在7001000煅烧,得到产品。该方法主要采纳机械手段进行原料的混合及细化,易导致原料微观分布不匀称,使扩散过程难以顺当地进行,同时,在机械细化过程中简单引入杂质,且煅烧温度高,煅烧时间长,反应步骤多,能耗大,锂损失严峻,难以限制化学计量比,易形成杂相,产品在组成、结构、粒度分布等方面存在较大差异,因此电化学性能不稳定。 案例1、Y.J.Shin等将Co3O4和Li2CO3通过固相反应制得LiCoO2,然后将适量的LiCoO2、NiO、MnO2和Li2CO3通过固相反应得到LiNi1/3Co1/3Mn1/3O2。由于配料混合的不匀称性干脆影响到正极材料中镍钴锰分布,因此产品在组成、结构、粒度分布等方面存在较大差别,材料电化学性能重现性不好。 案例2、N.Yabuuchi等将Ni(OH)2、Co(OH)2和Mn(OH)2按Co:Ni:Mn=0.98:1.02:0.98充分混合,球磨,在150下预热1h,然后在空气中加热到1000烧结14h得到LiNi1/3Co1/3Mn1/3O2,用高温固相法干脆烧结上述原料,简单出现混料不均、无法形成均相共熔体以及各批次产物质量不稳定等问题。 溶胶-凝胶法:先将原料溶液混合匀称,制成匀称的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术须要的设备简洁,过程易于限制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学匀称性、高化学纯度的材料,但是合成周期比较长,合成工艺相对困难,成本高,工业化生成的难度较大。 案例:J.Li等以锂、镍、锰、钴的乙酸盐为原料,柠檬酸为络合剂,在80制成溶胶,然后在120干燥,形成凝胶,并在450预烧5h,900再焙烧 15h,得到最终产物。 化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合匀称的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为干脆化学共沉淀法和间接化学共沉淀法。干脆化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采纳共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合匀称的前驱体,且煅烧温度较低,合成产物组分匀称,重现性好,条件简单限制,操作简洁,目前工业上已有规模生产。 案例1、S.C.Zhang等以LiNO3、Ni(NO3)2、Co(NO3)2和MnCl2为原料按摩尔量的比3.3:1:1:1溶解在乙醇里形成总离子浓度为3mol/L的溶液,将此溶液以1滴/秒的速度滴加到3mol/L的KOH乙醇溶液中,分别出沉淀并在80干燥10h,然后在空气中于400800煅烧,获得粒径1040nm的粉末正极材料。 案例2、X.FLuo等按化学计量比将NiS04·6H20、CoSO4·7H2O和MnS04·H2O溶解到蒸馏水中,在该混合溶液中缓慢加入2mol/L NaOH溶液和适量的2mol/L NH4OH,同时在50氩气爱护下激烈搅拌24h。反应完全后,将所得沉淀物过滤,并用蒸馏水洗涤,在5060真空条件下干燥一夜。将所得产物与过量5的Li0H·H20混合。将所得粉末压成饼状,在480加热5h,650加热9h,然后在空气中于7001000煅烧18h,获得LiNi1/3C01/3Mn1/302。在以氢氧化物作沉淀剂的共沉淀的过程中,假如反应没有惰性气体爱护,初始得到的Mn(OH)2就很简单被氧化成Mn00H和Mn02,而Mn2+则能在碳酸根离子或草酸根离子中稳定存在。因此THCho工作组分别采纳碳酸盐共沉淀法和草酸盐共沉淀法制备出正极材料LiNi1/3C01/3Mn1/302。 水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、匀称性、形态、成份可以得到严格的限制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,探讨表明在160的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,须要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400点燃,燃烧产物碾碎后在空气中800加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到Ni1/3Co1/3Mn1/3O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料; 化学共沉淀法制备LiNi1/3Co1/3Mn1/3O2(方法与结论) 1、北京高校化工学院采纳化学沉淀法制备出了LiXNi1/3Co1/3Mn1/3O2。即用去离子水将摩尔比为1:1:1的镍钴锰三氯化物配成1.5M的溶液,将三元氯化物溶液和碳酸氢铵溶液以固定的流速滴入装有40去离子水的烧杯中,高速搅拌后真空抽滤,用去离子水多次洗涤后120烘干得到前驱体。将前驱体与碳酸锂根据1.05:1混合并在马沸炉中1000煅烧12h,自然冷却后研磨筛分得到三元正极材料。 2、华南农业高校理学院采纳共沉淀法合成了正极材料LiNi1/3Co1/3Mn1/3O2。镍、钴、锰三元共沉淀物前驱体的合成方法为限制结晶法。沉淀剂分别为LiOH、NaOH+NH3.H2O、NH4HCO3、Na2CO3和NH4HCO3+Na2CO3。按镍钴锰1:1:1称取硝酸镍、硝酸钴和硝酸锰配成适当浓度的混合溶液,将此混合溶液和适当浓度的沉淀剂通过流量计加入到反应釜中,限制搅拌速度、PH值和温度。所得沉淀用去离子水洗涤干燥后得到镍钴锰三元沉淀物前驱体Ni1/3Co1/3Mn1/3(OH)2或 Ni1/3Co1/3Mn1/3CO3。以n(Li):n(Ni1/3Co1/3Mn1/3)=1.05:1的比例将Li2CO3和前驱体球磨混合,将混合好的原料放入坩埚中并用肯定大小的压力将混合物压紧,将坩埚放入程序控温箱式电阻炉内,在空气气氛下于480恒温若干小时,再以肯定的升温速率升温至950,保温肯定时间后缓慢降至室温,得到三元正极材料,将烧制好的样品粉碎、研磨并过400目筛备用。 结论:由不同沉淀剂所合成的LiNi1/ 3Co1/ 3Mn1/ 3O2 材料具有均具有2NaFeO2 型层状结构。以不同沉淀剂合成的产物的形貌有较大差异,而且影响了产物LiNi1/ 3 Co1/ 3Mn1/ 3O2 正极材料的电化学性能。其中采纳NH4HCO3 + Na2CO3 为沉淀剂所合成的LiNi1/ 3Co1/ 3Mn1/ 3O2 材料的电化学性能最好,首次放电比容量为190. 29 mAh/ g ,20 次循环后放电容量还保持161. 29 mAh/ g ,容量保持率为84. 8 %。 3、湘潭高校化学院以NiSO4、CoSO4、MnSO4、NH3·H2O 、LiOH 为原料,采纳共沉淀和高温烧结法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并探讨前体驱的制备中氨水用量对共沉淀的影响。结果表明, n(NH3·H2O):n(Ni2+-Co2+-Mn2+)=2.7:1 制备的前驱体,在900 下煅烧10 h,制备的LiNi1/3Co1/3Mn1/3O2材料的结构与电化学性能较好,其首次放电容量达到187.5mAh·g-1,0.2C倍率50 次循环后容量仍为170.6 mAh·g-1,容量保持率为94.0 %。由不同前驱体制备的LiNi1/3Co1/3Mn1/3O2 正极材料中, 当按n(NH3·H2O):n(Ni2+-Co2+-Mn2+)的值为2.7:1 制备的前驱体Ni1/3Co1/3Mn1/3(OH)2,合成的正极材料LiNi1/3Co1/3Mn1/3O2的结构与性能较好。 4、Yoshio采纳碳酸盐共沉淀法合成的球形LiNi1/3Co1/3Mn1/3O2,产品半径在5m左右,在电压范围内2.84.5V放电容量达到186.7mAhg-1,不行逆容量损失仅为10.72%,且倍率性能好,以2.5C放电,容量为145 mAhg-1。 5、Sun和罗旭芳等采纳氢氧化物共沉淀法,通过调整前驱体制备时的PH值、搅拌速度、络合剂的量,制备得到粒径为10m、分布均一的类球形前驱体,与LiOH烧结后得到振实密度高达2.39g.cm-1的正极材料,比容量达到177 mAhg-1(2.84.5V),同时也具有较好的高温放电性能,在55放电比容量高达168 mAhg-1。 6、Ohzuku采纳共沉淀法合成的Ni1/3Co1/3Mn1/3(OH)2前驱体与LiOH.H2O反应合成的LiNi1/3Co1/3Mn1/3O2具有较好的高温放电性能以及大电流放电性能,在33、55、75测得材料的放电比容量分别为205 mAhg-1、210 mAhg-1、225 mAhg-1;在55以20C放电容量达160 mAhg-1。在2.54.6V电压范围内,以18.3mA/g放电,其比容量高达200 mAhg-1,放电平台在3.75V左右,首次循环不行逆容量仅为20 mAhg-1。 7、Zhang等用有机溶剂共沉淀法制得粒径为1040nm的LiNi1/3Co1/3Mn1/3O2,在50C、100C放电倍率下,经过10个循环其比容量为100 mAhg-1,即比功率为15000KW.g-1,满意绿色动力车的能源需求。 8、中科院青海盐湖探讨所将肯定量的Co(NO3)2·6H2O、Ni(CH3COO)2·4H20和Mn(CH3COO)2·4H20,按化学计量比溶于二次蒸馏水中,同时,向混合溶液中通人氩气;待盐完全溶解后,向混合溶液中滴加适量的草酸溶液,并用适量的NH3·H20调整溶液的pH值为8-9;过滤出的沉淀用蒸馏水洗涤多次至中性后50真空干燥,得到淡粉色的粉末。取肯定量淡粉色物质与化学计量比的Li2CO3混合,在强力搅拌下分散于C2H5OHH2O的混合溶剂中;待多元混合物于50真空干燥后,在空气中500预烧6 h;待预烧产物冷却至室温后压成片状,压片于7001 000空气中焙烧1224 h后冷却至室温后,充分研磨即得到三元正极材料LiMnl/3 Col/3 Nil/3 02。 结论:在制备三元正极材料LiCol/3 Nil/3 Mn1/3 02的过程中,利用氩气作为爱护气氛,采纳共沉淀法制备得到的前驱体 Mnl/3 Nil/3 C01/3C204·xH20中Co、Mn和Ni均为+2价,保证了前驱体中各离子的分散匀称性,并得到了分散匀称的三元沉淀;Mnl/3Nil/3Co1/3C204·xH20的TGDSC分析表明,Mnl/3 Nil/3 C01/3C204·xH20中的x=2。Mnl/3Nil/3C01/3C204·xH20与碳酸锂的混合物在乙醇一水溶液中能得到分散匀称的前驱体;前驱体的TGDSC以及XRD探讨表明,LiCo1/3 Ni1/3 Mn1/302的合成温度大于600;且混合物在500预烧后于900煅烧1224 h即可合成具有良好结晶三元正极材料。电池循环测试表明,900温度下合成的正极材料具有较高的首次充放电容量,首次放电效率达到943;循环伏安扫描分析表明以此法(氩气爱护草酸共沉淀,乙醇溶液分散,900空气中煅烧)合成的三元正极LiCol/3Ni1/3Mn1/302在45 V旁边没有不行逆容量所造成的阳极峰,表明900温度下合成的正极材料在经过多次循环后仍具有较高的容量。 9、Hu将相等摩尔比的Ni、Co和Mn硝酸盐在室温下进行搅拌,然后加入适量的LiOH·H20,加入NH4OH作为螯合剂。共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500煅烧5 h,然后将LiOH·H20与经过煅烧后的产物CoNiMn04根据化学计量比进行混合球磨。先在450固相煅烧6h,然后再在900固相煅烧12 h。制备的材料的晶格参数a=02882nm,c=1438 2nm。在3.0-4.5 V电压下,分别在0.1,0.5和1.0 C下充放电,其首次放电容量分别为18954,16837和16759 mAh·g-1,50次循环后的容量保持率分别为9259,7870和6251。 采纳氢氧化物共沉淀法制各正极材料前驱体,Mn不仅以Mn(OH)2的形式沉淀,部分还会被氧化为Mn3+和Mn4+,以MnOOH或Mn02的形式沉淀出来,因此,在前驱体制备过程中,可以运用惰性气体进行爱护,防止Mn2+的氧化。 10、Cho以Na2C03为沉淀剂,制备了LiNil/3Col/3Mn1/302,在2.84.5 V电压下,在20mA·g-1电流密度下,材料的放电比容量为1867mAh·g-1,循环30次后,材料的容量保持率为8928。在25 C(450 mA·g-1)条件下,首次放电比容量为14479 mAh·g-1。通过对比探讨,结果表明LiNil/3Col/3Mn1/302正极材料的晶体结构和电化学性能随着合成条件的改变而变更。 采纳碳酸盐共沉淀法虽然能够解决Mn(OH)2在空气中易被氧化的问题,但在实际操作中碳酸盐与Ni、Co和Mn离子的沉淀不完全,限制了其在商业化生产中的应用,须要做进一步的探讨以后,才能进入工业化的应用。 11、江南高校化工学院将摩尔比为1:1:l的Ni(NO3)2·6H20,Co(N03)2·6H20,Mn(CH3C00)2·4H20溶于去离子水中,配成2molL的溶液。将其缓慢滴加到连续搅拌的反应釜中。同时,将 Na0H-Na2C03(摩尔比为1:1,NaOH浓度为1mol/L)溶液滴入反应釜中,当心调整搅拌器的转速以及两种溶液的滴加速度,以维持溶液的pH为11左右。当两种溶液滴加完成后,接着快速搅拌10h,并严格限制溶液的pH值。将沉淀过滤、洗涤、干燥,于5下分解5h。取出后加入过量5的Li0H·H20,充分研磨匀称,放人马弗炉中分别以850、900、950的温度烧结10h,自然冷却至室温,研磨,再在前一温度的基础上烧结10h,制得最终产物。 结论:以Ni(N03)2·6H20,Co(N03)2·6H20,Mn(CH3COo)2·4H20,LiOH·H20为原料,采纳Na0HNa2C03共沉淀的方法,以850、900、950的温度,在空气中合成了具有完整的-NaFe02结构的三元层状材料LiNi1/3C0l/3Mnl/302。测试结果表明,在相同的烧结制度下,900合成的材料初次放电容量达到1694nAhg,初次库仑效率达到832,20次循环仍能保持其初始容量的963,显示出良好的循环性能。有望作为优良的锂离子电池正极材料。 12、Shao-Kang Hu等将相等摩尔比的Ni、Co、Mn金属硝酸盐在室温下进行搅拌,然后加入适量的LiOH·H2O,NH4OH作为螯合剂加入。共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500进行5 h的煅烧,然后将LiOH·H2O与经过煅烧后的产物CoNiMnO4,根据化学计量比进行混合,球磨。LiNi1/3Co1/3Mn1/3O2材料的制备是通过在马弗炉中,450,固相煅烧6 h,900,固相煅烧12 h完成的。晶胞参数a=2.882Å,c=14.38Å。在3.04.5 V充放电电压范围,以0.1 C,0.5 C,1 C倍率充放电,首次放电容量分别为189.54 mAh·g-1,168.37 mAh·g-1,167.59mAh·g-1,50次循环以后的容量保持率分别为92.59%,78.70%,62.51%。 13、对于合成高密度前驱体Ni1/3Co1/3Mn1/3(OH)2的方法,依据相关文献的报道,作为络合剂的氨水是获得高密度前驱体的一个关键因素,选择过渡金属的醋酸盐,醋酸镍(Ni(CH3COO)2·4H2O),醋酸钴(Co(CH3COO)2·4H2O)和醋酸锰(Mn(CH3COO)2·4H2O)作为过渡金属离子原料,氢氧化锂(LiOH·H2O)为沉淀剂,氨水作为络合剂。试验路途为先将三种金属离子的醋酸盐根据相同的摩尔浓度混合匀称,然后加入沉淀剂进行共沉淀反应,再加入氨水作为络合剂,反应的终点通过加入氨水限制pH值来确定。试验在一般的空气气氛下进行,恒温水浴箱温度限制在55旁边。我们对能够影响到最终共沉淀产物形貌和性能的参数,如:pH值,过渡金属浓度,沉淀剂浓度,络合剂浓度等因素进行了具体的探讨。 pH值为10.5时,制备的前躯体颗粒大小适中,分布匀称,所得类球形颗粒形貌最规则,尺寸均一,直径在 20m左右;当pH值为9.5时,颗粒大小不一,其中有大颗粒,也有小颗粒,粒度分布不匀称,这些小颗粒可能是反应后期生成的富镍颗粒;随着pH值的渐渐增大,溶液的过饱和度增大,以成核为主导,晶粒长大变得困难,当pH值为11.5时,颗粒变小,球形度降低,颗粒间的分散性较差,此时晶粒尺寸较小,表面层离子的极化变形和重排使表面晶格畸变,有序性降低,在pH值较高时(pH值=11.5),液相共沉淀溶液为深褐色,溶液中晶粒的成核速度明显大于晶粒的成长速度,在碱性条件下,Mn(OH)2很简单和空气或者是反应溶液中的氧气发生反应生成MnO(OH),在整个共沉淀过程中,不断有这样的富锰小颗粒生成,这些小颗粒的径粒尺度在1.54.5m,没有达到共沉淀的目的。当pH值接着增大时,会使晶核结构趋于无定形化,渐渐有絮状沉淀生成。 对于金属离子浓度的选择,当金属离子浓度为2.0mol·L得到的前躯体整体形貌规整,颗粒尺度接近,颗粒粒径在25m旁边所以认为金属离子浓度为2.0 mol·L-1是一个合适的选择。 当沉淀剂浓度较小,为2.0 mol·L-1时,存在部分大颗粒(颗粒粒径在40m左右)和小颗粒(颗粒粒径在10m左右),粒度分布不够匀称,并且振实密度偏低,经测试为1.21 g·cm-3,随着沉淀剂浓度的增加,这种状况渐渐改善,沉淀剂浓度在3.0 mol·L-1旁边时,颗粒尺度相对接近,但是仍有细小颗粒的存在,当沉淀剂浓度增加到4.0 mol·L-1,得到的前躯体颗粒形貌规整,颗粒尺度接近,颗粒粒径在15m旁边,振实密度为1.56 g·cm-3。最终,当沉淀剂浓度在5.0 mol·L-1,颗粒明显变小,球形度降低,颗粒间的分散性较差。所以通过上述分析,认为沉淀剂浓度在4.0 mol·L-1旁边的时候,制备的前躯体从颗粒尺度,整体形貌均符合要求。 由于Ni,Co,Mn三种金属阳离子与氨水的络合实力不同,强弱依次为Ni2+>Co2+>Mn2+,所以当络合剂浓度过高时(4.56.0 mol·L-1),简单出现许多细小的颗粒,径粒在24.5m,这些就是富镍小晶粒。造成不匀称沉淀。当络合剂浓度为3 mol·L-1时,三种阳离子的沉淀速度比较一样,在氨水的络合作用下,晶粒的生长速度大于成核速度,使晶粒有序生长,沉淀匀称,颗粒大小尺度接近。而过低的络合剂浓度同样不利于共沉淀产物的生成,当络合剂浓度较小的时候,络合反应时间增加,并且须要较大的反应容积,所以通过以上分析,选择相对较小的络合剂浓度(3 mol·L-1)来制备共沉淀前驱物。 当陈化时间较少时(46 h),生成物的颗粒尺寸大小不一,伴随有少量的细碎颗粒和结块现象,出现这种状况是由于,在较少的陈化时间条件下,虽然已经完成了晶粒成核的过程,但是对于陈化时间较短,对于晶粒的生长没有达到预想的效果。随着陈化时间的加长,当陈化时间达到 8 h的时候,颗粒分散匀称,颗粒大小尺度接近,并且振实密度较高,为1.54 g·cm-3。当陈化时间进一步增加时,反应生成的共沉淀产物在溶液中的停留时间过长,颗粒间团聚现象严峻,连结成无规则形态。所以本试验通过陈化试验结果分析,将最终的液相共沉淀产物陈化时间确定为8 h。 加料速度确定了两液相瞬间接触位置的离子浓度,使得局部饱和度不同,从而对晶体成核和生长速率产生影响,得到不同颗粒尺度和形貌的前躯体。当加料速度较快时,溶液过饱和度高,成核占主导地位,使得晶粒成长困难,此时若接着保持较快的加入速率,将导致生成大量的小晶体,严峻的还可能生成无定形沉淀,这将严峻影响到最终合成的锂离子电池正极材料的性能;当加料速度较慢时,晶粒的生长占主导地位,使得反应生成物在溶液中的停留时间增长,晶粒间团聚现象加重,简单导致形成无规则状态。本试验的加料速度限制在0.81 L/h。 在搅拌器的不断搅动下,反应物之间相互碰撞,接触并发生反应,使得生成的晶核渐渐长大,搅拌的速率干脆确定着络和以及沉淀反应进行的效果,最终影响到制备出的前躯体的形貌和性能。在液相共沉淀反应体系中,搅拌的主要目的是使饱和溶液和加入料溶液匀称地混合,进而完成结晶反应。本试验在液相共沉淀反应过程中,搅拌速率限制在300 r/m左右。 采纳三段式固相反应的方法,三个温度点分别为480,620和840(及以上),使LiOH·H2O可以更好的熔融和分解,并且使Li2O充分渗透到前驱体中去,反应物之间充分接触,制备出的正极材料结晶度较高,晶体结构更加规整。 最终固相煅烧温度为840时,晶体结构完整,颗粒形貌规整,电化学性能优良,首次充放电容量分别为165.80 mAh·g-1和154.50 mAh·g-1,经过20次充放电循环后的容量保持率为91.91%。 在随着固相反应时间渐渐增长的过程中(8 h14h),I003/I104的比值先增大,然后有所减小(固相温度为14 h),(102)/(006)和(108)/(110)两对峰分裂渐渐明显,衍射峰也渐渐变得尖锐,当固相反应时间为8 h时,所制备的LiNil/3Co1/3Mnl/3O2正极材料由于高温固相反应时间较短,材料未能形成良好的层状结构,材料中阳离子的无序度较高,出现阳离子混排的状况比较明显,同时晶体结晶度也较差。随着固相反应时间的增加,层状特性渐渐明显,晶体中阳离子扩散的更为匀称。当煅烧时间达到12 h时,I003/I104值显著增大,(102)/(006)和(108)/(110)两对峰分裂明显,衍射峰尖锐,表明此时所得正极材料晶体中阳离子分散更为匀称,晶体层内紧密收缩,层状特性趋于完备。 随着固相反应时间的增加,颗粒的团聚显现明显减弱,在煅烧时间为12 h时,颗粒尺寸一样,形貌规整,清楚。在固相反应时间相对较少的8 h和10 h中,颗粒尺寸改变明显,并且伴随着团聚现象,在固相反应时间为 14 h时,颗粒尺寸有所增大。固相合成时间较短时,合成的样品颗粒球形度较差,不利于形成类球型形貌。 探讨了在固定煅烧温度(840),不同煅烧时间制备LiNi1/3Co1/3