中学数学教学.docx
中学数学教学 进入新世纪以后,我们面临的问题许多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。原委须要什么样的人才呢,专家们指出须要以下四种素养的人才:第一,有新观念;其次,能够不断从事技术创新;第三,擅长经营和开拓市场;第四、有团队精神。为此数学教学中应加强学生这四个方面实力的培育。 一、在数学教学中培育学生的新观念、新思想新观念中不仅包含对事物的新相识、新思想,而且包含一个不断学习的过程。为此作为新人才就必需学会学习,只有不断地学习,获得新学问更新观念,形成新相识。在数学史上,法国大数学家笛卡尔在学生时代喜爱博览群书,相识到代数与几何割裂的弊病,他用代数方法探讨几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过详细问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,相识到了曲线的交点与方程组的解之间的关系。主见把代数与几何相结合,把量化方法用于几何探讨的新观点,从而创立解析几何学。作为数学老师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,敏捷运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法探讨证明不等式。 例 已知 a0,b0, 且 a+b=1, 求证 (a+2) (a+2) +(b+2) (b+2) 证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a0,b0) 作为平面直角坐标系内的线段,也能用解析几何学问求证。证法如下:在平面直角坐标系内取直线段 x+y=1,(0x1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到始终线的距离是这点与该直线上随意一点之间的距离的最小值。而 dd=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)。“授之以鱼,不如授之以渔”,方法的驾驭,思想的形成,才能使学生受益终生。 二、在数学教学中培育学生的创新实力 创新实力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探究学问的思维过程总是从问题起先,又在解决问题中得到发展和创新。教学过程中学生在老师创设的情境下,自己动手操作、动脑思索、动口表达,探究未知领域,找寻客观真理,成为发觉者,要让学生自始至终地参加这一探究过程,发展学生创新实力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;其次组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成很多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发觉它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法敏捷运用的完备范例。教学中再次通过呈现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当时数学家的创建思维进程,激发学生的创建思维和创新实力。 三、在数学教学中培育学生经营和开拓市场的实力 一切数学学问都来源于现实生活中,同时,现实生活中很多问题都须要用数学学问、数学思想方法去思索解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此数学教学中应有意识地培育学生经营和开拓市场的实力。擅长经营和开拓市场的实力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思索能否利用组合数的意义来证明。即构造一个组合模型,原式左端为个元素中取个的组合数。原式右端可看成是同一问题的另一种算法:把满意条件的组合分为两类,一类为不取某个元素,有种取法;一类为必取有种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们经常须要对市场进行一些基本的数字统计,通过建立数学模型进行分析探讨来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学学问解决实际问题的实力,而且对提高学生的擅长经营和开拓市场的实力大有好处。 四、 在数学教学中培育学生团队精神 团队精神就是一种相互协作、相互协作的工作精神。数学老师在教学中多设计一些学生相互协作能解决的问题,增进学生协作意识,培育他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 0.5、0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发觉其次组比第一组的体积接近于半球的体积,假如纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发觉了球的体积公式另一证法。同时不仅向学生讲教学过程中的试验材料为什么让大家各自打算,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生相识到只有同心协力才能达到胜利的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。