膜分离技术环保领域应用,(2).docx
膜分离技术环保领域应用,(2)膜分别技术在环保领域的应用自产业革命以来,以西方各国为主体的发达国家显著加快了工业化的速度。其结果带来了生活上的舒适与便利,但同时也引起了自然生态系统的破坏,地球温度上升、臭氧层被破坏、废弃物的激增等等都是明显的实例。1992 年在巴西实行的世界环境首脑会议及通过的里约热内卢宣言表明白人类对环境爱护的重视。作为详细行动,世界各国正大力推广国际标准化组织制定的 ISO14000 系列的企业环境管理认证体系。归根结低,环境污染是由于人类在生产活动时排出的各种物质的质和量超过自然界的自净实力而产生的。因此,环境爱护的最佳方法在于将排出的物质回收并再利用,或复原到自然界原有的存在形态。实际实施时,除生物、化学处理外,常采纳削减容积、稀释降浓等物理方法。不言而喻,目前仍存在大量的现实问题亟待解决。 众所周知,膜分别技术是物质分别技术中的一个单元操作。膜分别法的最大特点是驱动力主要为压力,不伴随须要大量热能的改变。因而有节能、可连续操作、便于自动化等优点。本文将介绍一些适用于环保领域的膜技术应用实例。1. 环境爱护和膜的适用用途环保的一个非常重要的内容就是废物(固体)、废液(液体)及废气(气体)处理,即将三废物再利用,削减向四周环境排出的数量或将排放物的有害物质经过分别、无害化处理后排放。表 1 中给出了典型的三废物质及膜分别技术的适用范围。从表 1 中可以看出,因膜技术的处理对象为流体,故主要适用于废水、废液及废气的处理。图 1 给出了分别膜的分类。依据待分别物质的大小,依次可以运用微滤、超滤、纳滤、反渗透及气体分别膜。须要说明的是,膜分别只具有物质分别的功能,若构成一个完整的环保处理系统,经常须要与其它处理技术组合运用。表 表 1废弃物形态及膜分别技术的适用性 废弃物形态废弃物种类膜的可适用 性固体废物纸张、塑料、金属不适用液体废水悬浮物微滤膜 ( MF ) 、超滤膜 ( UF )溶解性成份 ( 三卤甲烷、农药等 )超滤膜 ( UF ) 、纳滤膜 ( NF ) 、反渗透膜 ( RO )废液各种化学溶剂纳滤膜 ( NF ) 、反渗透膜 ( RO )气体废气有机蒸汽、氟利昂、硫化物、二氧化碳气体分别膜图 图 1分别膜的分类2. 适用于废水排放用途的膜分别技术表 2 给出了各种废水排放膜处理的好用实例。排放水处理以往采纳沉淀法、活性污泥法、蒸发法等,现在膜法或与上述方法协作运用,或者完全代替运用。运用膜法时,除得到膜透过液外,对于浓缩液有时可通过萃取方法提取有用物质,而多数状况则是固化后燃烧处理。表 表 2膜分别法用于废水排放处理的应用实例 应用领域 适用分别膜 透过液 浓缩液金属工业模铸废水水溶性切削油铜压延含油废水 NF、ROUF、NF、RONF、RO 放流/活性污泥活性碳吸附同上 固化燃烧或转专业处理同上同上 金属表面处理电镀回收液电镀水洗废水脱脂废水废稀料 NF、RONF、ROMF、UFUF再利用 ( 洗净水 )同上再利用再生稀料 再利用 ( 溶液 )转专业处理固化燃烧或转专业处理固化燃烧 半导体工业硅研磨废水水洗废水 UF RO再利用 ( 研磨用水 )再利用 转专业处理转专业处理 建筑物内生活废水建筑物内生活废水粪便下水二次处理水 UF、NF、ROUF RO中水道排放工业用水、源水用水 下水道排放活性污泥槽排放2.1 下水的高度处理 依据排放物质的成分的不同,处理方式有所差异,但一般是将膜技术与絮凝剂沉降、加压浮选和生物处理等技术协作起来运用。絮凝沉降时需依据水质的改变限制絮凝剂的投入量。生物处理时的处理效果常受温度、浓度等因素的影响,水质较难保持稳定。膜分别法作为不受水质变动影响,且可去除可溶解成分的下水高度处理法已渐渐进入好用化阶段。日本第一套运用反渗透膜技术的大型试验装置于 19931995 年在日本千叶县花见川下水处理场完成了实际运转试验。该装置的处理流程如图 2 所示。该系统处理前后的水质分析结果如表 3 所示。反渗透膜产生(210m 3 /d)的水质达到了自来水标准。反渗透装置实现了自动连续运行。从下水变成上水的处理成本为 37 日元/m 3 (约为 RMB 2.4 元/m 3 )。 图 图 2下水的高级处理流程表 表 3水质分析结果( 平均值) ) 指标项目单位下水二次 处理水RO 原水RO 膜透过 渗透水除去率 - % 比 比 RO 原水水道水质 标准源水用的水 利用目标值固体 形态 物质 指标SS mg/l 4.2 0.40.4-TDSmg/l349.4395.7219.244.6500 2-有 机 物 指 标COD Mn mg/l 9.4 7.4 2.1 71.2 10-BOD 5mg/l3.71.60.5-3 mg/lTOCmg/l7.54.90.4191.7-富 有 营 养 化 指 T - P mg/l 0.3 0.02 0.01-T - Nmg/l18.620.213.732.1-NH 2- Nmg/l14.915.79.639.1-NO 2- Nmg/l0.81.61.58.310-标NO 3- Nmg/l0.61.41.4-10-无 机物指标 pH - 7.3 7.2 6.9 - 5.88.6 5.88.6 M - 含碱度mg/l 135.2 108.4 51.2 52.8 - - 电导率μs/cm 697.4 791.9 445.6 43.7 - - Namg/l65.473.044.838.6-Camg/l24.527.410.063.5300 4-Clmg/l86.3113.983.226.9200-SO 4mg/l44.758.40.3100.0-Simg/l11.810.18.614.7-Femg/l0.10.10.1-0.3-Mnmg/l0.10.10.1-Almg/l0.10.10.1- 作为纳滤(NF)膜与反渗透(RO)膜联用的应用实例可举大阪下水道馆的水处理装置。该装置将二次处理(生物处理水)后的下水用 NF、RO 膜再次处理,处理后的水用于展览馆大型水槽内的热带鱼饲养。该装置的工艺流程如图 3 所示。处理前后的水质分析结果见表 3。图 图 3下水高级处理工艺流程2.2 膜技术与净化槽技术的联用 在日本,一些下水处理系统不完备或难于长距离向下水处理厂输送的地区,生活废水多依靠净化槽进行下水处理。安装有浸渍平膜组件膜分别型净化槽的示意图如图 4 所示。在活性污泥曝气槽内浸入呈格栅形的平模组件,依靠透水侧的负压吸引,将因曝气而形成的循环原水透过膜面而实现过滤。这种在活性污泥处理技术上附加的膜分别技术可限制活性污泥的浓度,提高生物反应的效率,同时又可得到水质稳定的处理水。图 图 4 4日本厚生省 ( 卫生福利部 ) 正在主持可适用家庭厕所、厨房及浴室排水处理的小型膜分别型净化槽验证明验,并安排于 1998 年实现大面积推广。3. 适用于 上水( 饮用水) 用途的膜分别技术饮用水也日益受到环境污染的影响,江河水、地下水的污染多数是因为三废物质排放所引起的。特殊是作为污染物质,不仅是混浊物质,还常伴随有三卤甲烷及农药等可溶解成分,以往的絮凝沉降、砂滤等方法不能除去可溶解成分,故还常需用活性炭吸附机臭氧氧化分解处理。 膜分别技术在饮用水方面的应用主要集中在以下两个方面:§ 用微滤(MF)膜和超滤(UF)膜代替絮凝沉降和砂滤。此法可称为简易处理。膜法的优点在于不运用絮凝剂等化学药剂,在水质波动较大时仍可自动连续处理,占地面积也水。§ 用纳滤(NF)膜或反渗透(RO)膜去除前述方法不行除去的三卤甲烷、农药等可溶解性成分。此法可称为深度处理。部分 NF、RO 膜对三卤甲烷的脱除效果如表 5 所示。由于膜材质及制造工艺不同,各种 NF、RO 膜对三卤甲烷的脱除率有所不同。在美国已普遍将 NF、RO 膜技术用于地下水为水源的城市供水系统。例如在佛罗里达州,为了去除地下水中的三卤甲烷,80 年头就建成了日产水量为 3.8 万立方米的 NF、RO 膜分别供水厂。膜装置排出的浓缩水的处理也是技术难点之一,在美国多向海洋或江河下游排放或向地下深井渗透。 表 表 5 5O RO 膜对三卤甲烷的脱除效果率评价结果供应液RO 膜对三卤甲烷的脱除率三卤甲烷种类浓度芳香族聚酰胺聚乙烯醇系列醋酸纤维素CHCl 325 71 33 18 CHBrCl 26.3 70 28 11 CHBr 2 Cl 10 81 41 12 CHBr 350 90 52 17 CH 3 CCl 310 98 85 50 CCl 41 998866CHCl=CCl 238 978352CCl 2 =CCl 210 999870对应的日东产品型号NTR - 759HR NTR - 729HF NTR - 1698 4. 应用于排气的膜分别技术 大气污染的主要缘由有:促进地球温暧化的的二氧化碳、引起酸性雨的燃烧气体中的含硫成分、造成光化学污染的氮气及有机蒸汽成分、造成大气臭氧破坏的氯氟碳(CFC)成分等等。关于这些气体的排放基准基础,世界各国都在制定相应规则和环境目标。二氧化碳及二氧二化硫分别膜仍未达到好用化阶段。有机蒸气分别,例如汽油蒸气的回收分别膜已有应用实例。有机蒸气称作挥发性有机化合物 VOC(Volatile Organic Compounds)。 VOC 回收膜已被一些公司如日本的日东电工,美国的 MTR、德国的 GKSS 所商品化。日本钢管(NKK)公司开发的汽油蒸汽回收膜分别装置的示意流程如图 5 所示。含有汽油成分的混合气体经前置过滤器除涯后导入膜分别组件,在膜透气侧设胡真空泵造成负压,透过分别膜的 VOC 成分在汲取塔内被汽测液体所汲取。 图 图 5汽油蒸汽回收流程关于氟利昂及替化氟利昂的回收,在日本,有在聚合生产线贮槽上设置化替代氟利昂的膜回收装置,在欧美,有从涂膜工艺生产的 HCFC-123 气体的回收装置已进入好用化阶段。§ 多田直树,大阪工研协会主催,产业膜利用(1996) § 竹岛正,石山荣一,当间久夫,柴田敏幸,PPM.26(1),35-41(1995) § 多田直树,日东技报,34(2),48-51(1996) § 安达哲郎,别府雅志,西田佑二,日东技报 34(2),75(1996) § 笠井真二,田窿方博,那须正夫,近藤正臣,卫生化学,36(3),248(1990) § P.H.Lange,P.E.Laverty,日东技报,27(2),12 (1989) § 中尾真一, 97 ,531 § 中尾真一,膜,20(1)2-9(1995) § 原谷贤治,膜 20(1)10-17(1995) § 冈本敦,膜,20(1)18-28(1995)