实际气体性质及热力学一般关系式幻灯片.ppt
实际气体性质及热力学一般关系式第1页,共52页,编辑于2022年,星期五161 理想气体状态方程用于实际气体偏差理想气体状态方程用于实际气体偏差理想气体理想气体实际气体实际气体压缩因子压缩因子(compressibility factor)Z1=11氢不同温度时压缩因子氢不同温度时压缩因子 与压力关系与压力关系 第2页,共52页,编辑于2022年,星期五2在标准状态下在标准状态下(p=1标准大气压,标准大气压,273.15 K)分子当量作用半径分子当量作用半径分子有效作用半径分子有效作用半径所以,可在常温常压下所以,可在常温常压下忽略忽略分子间作用力和体积。分子间作用力和体积。第3页,共52页,编辑于2022年,星期五362 范德瓦尔方程和范德瓦尔方程和R-K方程方程一、范德瓦尔方程一、范德瓦尔方程a,b物性常数;物性常数;内压力内压力Vmb分子自由活动的空间分子自由活动的空间Vm:三个不等实根:三个不等实根Vm:三个相等实根:三个相等实根Vm:一个实根两个虚根:一个实根两个虚根将范德瓦尔方程按将范德瓦尔方程按Vm展开:展开:图图 1 CO2等温线等温线或或第4页,共52页,编辑于2022年,星期五4范氏方程:范氏方程:1)定性反映气体)定性反映气体 p-v-T关系;关系;2)远离液态时,)远离液态时,即使压力较高,计即使压力较高,计算值与实验值误差算值与实验值误差较小。如较小。如N2常温下常温下100 MPa时无显著误时无显著误差。在接近液态时,差。在接近液态时,误差较大,如误差较大,如CO2常常温下温下5MPa时误差约时误差约4%,100MPa时误差时误差35%;3)巨大理论意义。)巨大理论意义。图图 2 CO2等温线等温线第5页,共52页,编辑于2022年,星期五5范德瓦尔常数范德瓦尔常数a,b求法:求法:1)利用)利用p、v、T 实测数据拟合实测数据拟合;2)利用通过临界点)利用通过临界点 的等温线性质求取的等温线性质求取:临界点临界点p、v、T值满足范氏方程值满足范氏方程第6页,共52页,编辑于2022年,星期五6物物 质质空气空气一氧化碳一氧化碳正丁烷正丁烷氟利昂氟利昂12甲烷甲烷氮氮乙烷乙烷丙烷丙烷二氧化硫二氧化硫132.5133425.2384.7191.1126.2305.5370430.73.773.503.804.014.643.394.884.267.880.088 30.093 00.254 70.217 90.099 30.089 90.148 00.199 80.121 70.3020.2940.2740.2730.2900.2910.2840.2770.2680.135 80.146 31.3801.0780.228 50.136 10.557 50.931 50.683 70.036 40.039 40.119 60.099 80.042 70.038 50.065 00.090 00.056 8表表6-1 临界参数及临界参数及a、b值值第7页,共52页,编辑于2022年,星期五7二、二、R-K方程方程a,b物性常数物性常数 1)由)由p,v,T实验数据拟合;实验数据拟合;2)由临界参数求取)由临界参数求取临界温度临界温度/临界压力临界压力/MPa临界比体积临界比体积/(m3/kg)水水374.1422.090.003 155二氧化碳二氧化碳31.057.390.002 143氧氧-118.355.080.002 438氢氢-239.851.300.003 219 2第8页,共52页,编辑于2022年,星期五8三、多常数方程三、多常数方程 1.B-W-R方程方程其中其中B0、A0、C0、b、a、c、为常数为常数第9页,共52页,编辑于2022年,星期五92.M-H方程方程11个常数。个常数。第10页,共52页,编辑于2022年,星期五1063 对应态原理与通用压缩因子图对应态原理与通用压缩因子图一、对应态原理一、对应态原理(principle of corresponding states)代入范氏方程代入范氏方程可导得可导得范德瓦尔对比态方程范德瓦尔对比态方程对比参数对比参数(reduced properties):第11页,共52页,编辑于2022年,星期五11讨论:讨论:1)对比态方程中对比态方程中没有物性常数没有物性常数,所以是,所以是通用方程通用方程。2)从对比态方程中可看出从对比态方程中可看出 相同的相同的p,T 下,不同气体的下,不同气体的v不同不同 相同的相同的pr,Tr下,不同气体的下,不同气体的vr 相同,即相同,即 各种气体在对应状态下有相同的比体积各种气体在对应状态下有相同的比体积对应态原理对应态原理 f(pr,Tr,vr)=0 3)对大量流体研究表明,对应态原理大致是正确的,若采用对大量流体研究表明,对应态原理大致是正确的,若采用 “理想对比体积理想对比体积”Vm,能提高计算精度。能提高计算精度。临界状态作理想气体计算的摩尔体积。临界状态作理想气体计算的摩尔体积。实际气体的摩尔体积;实际气体的摩尔体积;第12页,共52页,编辑于2022年,星期五12二、通用压缩因子和通用压缩因子图二、通用压缩因子和通用压缩因子图 2.通用压缩因子图通用压缩因子图若取若取Zcr为常数,则为常数,则1.压缩因子图压缩因子图对应态原理对应态原理图图 3 N2 压缩因子图压缩因子图第13页,共52页,编辑于2022年,星期五13第14页,共52页,编辑于2022年,星期五14第15页,共52页,编辑于2022年,星期五15第16页,共52页,编辑于2022年,星期五16第17页,共52页,编辑于2022年,星期五17第18页,共52页,编辑于2022年,星期五1864 维里方程维里方程式中,式中,B,C,D第二、第三、第四维里系数第二、第三、第四维里系数特点特点:1)用统计力学方法能导出维里系数;)用统计力学方法能导出维里系数;2)维里系数有明确物理意义;如第二维里系数表示二个分子间相互作)维里系数有明确物理意义;如第二维里系数表示二个分子间相互作用;用;3)有很大适用性,或取不同项数,可满足不同精度要求)有很大适用性,或取不同项数,可满足不同精度要求。第19页,共52页,编辑于2022年,星期五1965 麦克斯韦关系和热系数麦克斯韦关系和热系数理想气体理想气体实际气体实际气体 气体的气体的u、h、s等参数无法直接测量,实际气体的等参数无法直接测量,实际气体的u、h、s也不能利用理想气体的简单关系,通常需依也不能利用理想气体的简单关系,通常需依据热力学第一、第二定律建立这些参数与可测参数的据热力学第一、第二定律建立这些参数与可测参数的微分关系求解微分关系求解。第20页,共52页,编辑于2022年,星期五20一、全微分一、全微分(total differential)条件和循环关系条件和循环关系 1.全微分判据全微分判据 设设则则2.循环关系循环关系 若若 dz=0,则,则两边除以两边除以dy 第21页,共52页,编辑于2022年,星期五213.链式关系链式关系 若若x、y、z、w中有中有 两个独立变量,则两个独立变量,则 1.亥姆霍兹函数亥姆霍兹函数F(或比亥姆霍兹函数(或比亥姆霍兹函数 f)又称又称自由能自由能 a)定义:)定义:F=U TS;f=u Ts b)因)因U,T,S均为状态参数,所以均为状态参数,所以F也是状态参数也是状态参数 c)单位)单位 J(kJ)d)物理意义)物理意义二、亥姆霍兹函数二、亥姆霍兹函数(Helmholtz function)和和 吉布斯函数吉布斯函数(Glibbsian function)第22页,共52页,编辑于2022年,星期五22定温过程定温过程可逆定温过程中自由能的减少量是过程膨胀功。可逆定温过程中自由能的减少量是过程膨胀功。2.吉布斯函数吉布斯函数G(或比吉布斯函数(或比吉布斯函数g)又称自由焓又称自由焓 a)定义:)定义:G=H TS g=h Ts b)因)因H,T,S均为状态参数,所以均为状态参数,所以G 也是状态参数也是状态参数 c)单位)单位 J(kJ)d)物理意义)物理意义定温过程:定温过程:可逆定温过程中自由焓的减少量是过程的技术功。可逆定温过程中自由焓的减少量是过程的技术功。第23页,共52页,编辑于2022年,星期五23 三、特性函数三、特性函数 某些状态参数若表示成某些状态参数若表示成特定的两个独立参数特定的两个独立参数的函数时,只需的函数时,只需一个一个状态参数就可以确定系统的其他参数,这样的函数称为状态参数就可以确定系统的其他参数,这样的函数称为“特性函数特性函数”。如。如 u=u(s,v);h=h(s,p);f=f(T,v)及 g=g(p,T)两式对比两式对比因而因而第24页,共52页,编辑于2022年,星期五24根据根据特性函数建立了各种热力学函数之间的简要关系。特性函数建立了各种热力学函数之间的简要关系。第25页,共52页,编辑于2022年,星期五25 四、麦克斯韦关系四、麦克斯韦关系 据据z=z(x,y)则则麦克斯韦关系麦克斯韦关系(Maxwell relations)第26页,共52页,编辑于2022年,星期五26助忆图助忆图麦氏关系是偏导数的等式,由麦氏关系是偏导数的等式,由p、v、T、s s分别在分子、分母分别在分子、分母 及脚标的位置且频率相同;及脚标的位置且频率相同;对等平行非对角和垂直向上加符号。对等平行非对角和垂直向上加符号。p sT vp sT v第27页,共52页,编辑于2022年,星期五27p sT vhfgu上述关系是将偏导数转换成状态参数上述关系是将偏导数转换成状态参数p、v、T、s s,偏导数分偏导数分 子为子为u、h、f、g、分母、分母及脚标为及脚标为p、v、T、s,频率相同;频率相同;折角不大于折角不大于90和垂直向上加符号。和垂直向上加符号。例例A322343例例A320254第28页,共52页,编辑于2022年,星期五28 五、热系数五、热系数 1.定义定义 (the volumetric expansion coefficient)等温压缩率(等温压缩率(又称定温压缩系数定温压缩系数)(the isothermal coefficient of compressibility)定容压力温度系数定容压力温度系数:2.相互关系相互关系 由循环关系可导得:由循环关系可导得:体积膨胀系数体积膨胀系数(又称定压热膨胀系数定压热膨胀系数)第29页,共52页,编辑于2022年,星期五29 3.其他热系数其他热系数 等熵压缩率等熵压缩率(coefficient of adiabatic compressibility):焦耳焦耳-汤姆逊系数汤姆逊系数(the Joule-Thomson coefficient)等 这些热系数有明显物理意义,由可测量(这些热系数有明显物理意义,由可测量(p,v,T)构成,)构成,故应用广泛。例由实验测定热系数,并据此积分求得状态方程。故应用广泛。例由实验测定热系数,并据此积分求得状态方程。第30页,共52页,编辑于2022年,星期五3066 热力学能、焓和熵的一般关系式热力学能、焓和熵的一般关系式 一、熵的微分方程式一、熵的微分方程式(generalized entropy relations)令s=s(T,v),则第一第一ds方程方程(the first ds equation)麦克斯韦关系麦克斯韦关系链式关系链式关系第31页,共52页,编辑于2022年,星期五31类似可得类似可得讨论:讨论:1)三式可用于任意工质)三式可用于任意工质 如理想气体如理想气体2)cp实验测定较易,所以第二实验测定较易,所以第二ds方程应用更广方程应用更广第二第二ds方程方程(the second ds equation)第三第三ds方程方程(the third ds equation)第32页,共52页,编辑于2022年,星期五32 二、热力学能微分方程二、热力学能微分方程 (generalized internal energy relations)第一第一du方程方程第二第二ds方程代入方程代入第二第二du方程方程第一第一ds方程方程第33页,共52页,编辑于2022年,星期五33第三第三ds方程代入方程代入第三第三du方程方程对于理想气体:对于理想气体:u与与v无关,只取决于无关,只取决于T第34页,共52页,编辑于2022年,星期五34三、焓的微分方程三、焓的微分方程(generalized enthalpy relations)将将ds方程代入方程代入dh=Tds+vdp可得可得第一第一dh方程方程第一第一ds方程代入方程代入第二第二ds方程代入方程代入第二第二dh方程方程第三第三ds方程代入方程代入第二第二dh方程方程第35页,共52页,编辑于2022年,星期五3567 比热容的一般关系式比热容的一般关系式研究比热容一般关系式的目的:研究比热容一般关系式的目的:1)热力学能和焓的微分方程中均含有)热力学能和焓的微分方程中均含有cp、cV;2)利用较易实验测量的)利用较易实验测量的cp计算计算cV;3)利用由实验数据构造的)利用由实验数据构造的cp导出状态方程。导出状态方程。一、比热容与一、比热容与p、v关系关系 二阶混合二阶混合偏导数相等偏导数相等第36页,共52页,编辑于2022年,星期五36讨论:讨论:1)若已知气体状态方程若已知气体状态方程f(p,v,T)=0,只需测得该数据在某一足够,只需测得该数据在某一足够低压力时的低压力时的cp,可据式(,可据式(A)计算任意压力)计算任意压力p时的时的cp大大减少实验工作量。大大减少实验工作量。定温下积分(定温下积分(A)式)式其中若其中若p0足够小,足够小,cp 0 即为理想气体定压比热容,只是温度的函数,右边即为理想气体定压比热容,只是温度的函数,右边积分即可得任意压力下积分即可得任意压力下cp 无需实验测定。无需实验测定。2)利用利用cp=f(T,p)数据,求数据,求积分,结合少量积分,结合少量p、v,T数据可确定数据可确定f(p,v,T)=0,然后对然后对T两次两次3)利用式(利用式(A)或式()或式(B),可确定已有数据精度。),可确定已有数据精度。第37页,共52页,编辑于2022年,星期五37二、二、cp-cV的一般关系的一般关系第一第一ds方程方程第二第二ds方程方程第38页,共52页,编辑于2022年,星期五38讨论:讨论:1)cpcV取决于状态方程;取决于状态方程;2)3)液体及固体液体及固体v、v均很小,故工程上近似取均很小,故工程上近似取cp=cV。第39页,共52页,编辑于2022年,星期五39*6-8 通用焓与通用熵图通用焓与通用熵图 通常通常,实际气体的焓、熵等数据以图表形式给出,供工程应用。这些实际气体的焓、熵等数据以图表形式给出,供工程应用。这些图表是据气体的状态方程及焓、熵等一般关系,结合实验数据制得的。图表是据气体的状态方程及焓、熵等一般关系,结合实验数据制得的。对于缺乏这类图表的气体,可利用通用焓图(对于缺乏这类图表的气体,可利用通用焓图(Generalized enthalpy chart)和通用熵图和通用熵图(and generalized entropy chart)进行计算。进行计算。余焓余焓(departure enthalpy)和和余熵余熵(departure entropy)分别是实际气分别是实际气体在某一状态时的焓和熵与假想把实际气体作为理想气体在同一状态体在某一状态时的焓和熵与假想把实际气体作为理想气体在同一状态时的焓和熵的偏差。用角标时的焓和熵的偏差。用角标*表示理想气体状态的参数,用脚标表示理想气体状态的参数,用脚标m表表示每摩尔的量,示每摩尔的量,和和 分别表示每摩尔工质的余焓及余熵。分别表示每摩尔工质的余焓及余熵。焓和熵都是状态参数,过程的焓差和熵差与中间途径无关,因此,焓和熵都是状态参数,过程的焓差和熵差与中间途径无关,因此,气体从平衡态气体从平衡态1 1到平衡态到平衡态2 2的焓差或熵差可分别用下列式子表示:的焓差或熵差可分别用下列式子表示:第40页,共52页,编辑于2022年,星期五40理想气体状态理想气体状态1和和2间的焓差,间的焓差,它只与温度有关它只与温度有关 理想气体状态理想气体状态1和和2间的熵差间的熵差 由通用焓图查取由通用焓图查取由通用熵图查取由通用熵图查取例例A820277第41页,共52页,编辑于2022年,星期五41*6-9 克劳修斯克劳修斯-克拉贝隆方程和饱和蒸气压方程克拉贝隆方程和饱和蒸气压方程 一、纯物质的相图一、纯物质的相图 p-T图常被称为相图图常被称为相图 三个两相区在相图上投影:汽化曲线、三个两相区在相图上投影:汽化曲线、溶解曲线和升华曲线交点称为溶解曲线和升华曲线交点称为三相点三相点,是三相线在是三相线在p-T图上的投影,三相线是物图上的投影,三相线是物质处于固、液、气三相平衡共存的状态点质处于固、液、气三相平衡共存的状态点的集合。的集合。二、吉布斯相律二、吉布斯相律 1875年吉布斯在状态公理的基础上导出,称作吉布斯相律。它确年吉布斯在状态公理的基础上导出,称作吉布斯相律。它确定了相平衡系统中每一个单独相热力状态的自由度数,即可独立变化定了相平衡系统中每一个单独相热力状态的自由度数,即可独立变化的强度参数的的强度参数的:其中,其中,F为独立强度量的数目;为独立强度量的数目;C为组元数;为组元数;p为相数为相数 第42页,共52页,编辑于2022年,星期五42三、克劳修斯三、克劳修斯-克拉贝隆方程克拉贝隆方程 式中角标式中角标和和分别表示相变过程中的两相。分别表示相变过程中的两相。克劳修斯克劳修斯-克拉贝隆方程是普遍适用的微分方程式,它将两相克拉贝隆方程是普遍适用的微分方程式,它将两相平衡时的斜率、相变潜热和比体积三者相互联系起来。因此,可平衡时的斜率、相变潜热和比体积三者相互联系起来。因此,可以从其中的任意两个数据求取第三个。以从其中的任意两个数据求取第三个。第43页,共52页,编辑于2022年,星期五43四、饱和蒸汽压方程四、饱和蒸汽压方程 低压下液相的比体积远小于气体的比体积,常可忽略不计。由低压下液相的比体积远小于气体的比体积,常可忽略不计。由于压力较低,气相可近似应用理想气体状态方程,式于压力较低,气相可近似应用理想气体状态方程,式 则则如果温度变化范围不大,可视为常数,则可得如果温度变化范围不大,可视为常数,则可得 式中,式中,A可由实验数据拟合可由实验数据拟合。第44页,共52页,编辑于2022年,星期五44所以在较低压力时,所以在较低压力时,和和 呈直线关系。虽然此式呈直线关系。虽然此式并不很精确,但它提供了一种近似的计算不同并不很精确,但它提供了一种近似的计算不同 下的下的方法。方法。在此基础上在此基础上式中,式中,A、B、C 均为常数,由实验数据拟合得出。均为常数,由实验数据拟合得出。第45页,共52页,编辑于2022年,星期五45*6-10 单元系相平衡条件单元系相平衡条件 一、平衡的熵判据一、平衡的熵判据 表明孤立系统中过程可能进行的方向是使熵增大的,当孤立系表明孤立系统中过程可能进行的方向是使熵增大的,当孤立系统的熵达到最大值时,系统的状态不可能再发生任何变化,即系统统的熵达到最大值时,系统的状态不可能再发生任何变化,即系统处于平衡状态。所以孤立系统的熵增原理给出了处于平衡状态。所以孤立系统的熵增原理给出了平衡的一般判据平衡的一般判据。这。这个判据称为平衡的熵判据,表述为个判据称为平衡的熵判据,表述为“孤立系统处在平衡状态时,熵孤立系统处在平衡状态时,熵具有最大值具有最大值”。从平衡的熵判据出发,可导出不同条件的平衡判据。如,等温、等压从平衡的熵判据出发,可导出不同条件的平衡判据。如,等温、等压条件下,封闭系统的自发过程朝吉布斯函数条件下,封闭系统的自发过程朝吉布斯函数G减小方向进行,系统平减小方向进行,系统平衡态的吉布斯函数最小,即为平衡的吉布斯判据衡态的吉布斯函数最小,即为平衡的吉布斯判据 第46页,共52页,编辑于2022年,星期五46 等温等体积时,封闭体系自发过程朝亥姆霍兹函数等温等体积时,封闭体系自发过程朝亥姆霍兹函数F减小的方向进减小的方向进行,系统平衡态的行,系统平衡态的F最小,即为平衡的亥姆霍兹判据最小,即为平衡的亥姆霍兹判据 在各种判据中,熵判据占有特殊的地位。在各种判据中,熵判据占有特殊的地位。二、二、单元系的化学势单元系的化学势 通常物系中可能发生四种过程:通常物系中可能发生四种过程:热传递、功传递、相变和化学反应热传递、功传递、相变和化学反应。相应于这些过程有四种平衡条件:相应于这些过程有四种平衡条件:热平衡热平衡条件条件系统各部分温度(促系统各部分温度(促使热传递的势)均匀一致、使热传递的势)均匀一致、力平衡力平衡条件条件简单可压缩系各部分的压力简单可压缩系各部分的压力(促使功传递的势)相等和(促使功传递的势)相等和相平衡相平衡条件及条件及化学平衡化学平衡条件。由于相变和化条件。由于相变和化学反应都是物质质量的转移过程,相变是物质从一个相转变到另一个相,化学反应都是物质质量的转移过程,相变是物质从一个相转变到另一个相,化学反应是从反应物转移到生成物,所以相平衡条件和化学平衡条件都涉及促学反应是从反应物转移到生成物,所以相平衡条件和化学平衡条件都涉及促使质量转移的势使质量转移的势“化学势化学势”。相平衡的条件是各组元各相的化学势分别相相平衡的条件是各组元各相的化学势分别相等等。第47页,共52页,编辑于2022年,星期五47变质量单元系统热力学能变质量单元系统热力学能 ,因此,因此 质量不变的单元系统,其热力学能微元变量可写成质量不变的单元系统,其热力学能微元变量可写成 所以所以表征了推动物质转移的势表征了推动物质转移的势单元系的化学势单元系的化学势变质量单元系微元过程中热力学能变化为:变质量单元系微元过程中热力学能变化为:式中右侧三项分别表示热传递、功传递和质量传递对式中右侧三项分别表示热传递、功传递和质量传递对热力学能变化的贡献。热力学能变化的贡献。第48页,共52页,编辑于2022年,星期五48结合结合H、F和和G的定义,可得的定义,可得 进一步分析还可得出,化学势在数值上与摩尔吉布斯函数相等进一步分析还可得出,化学势在数值上与摩尔吉布斯函数相等 三、三、单元系相平衡条件单元系相平衡条件 考虑由同一种物质的两个不同的相和考虑由同一种物质的两个不同的相和组成的孤立系组成的孤立系,第49页,共52页,编辑于2022年,星期五49 两相已分别达到平衡,它们的温度、压力和化学势分别为两相已分别达到平衡,它们的温度、压力和化学势分别为T、T、p、p和和、,则根据孤立系统熵增原理,在相和相之间也达到平衡时必,则根据孤立系统熵增原理,在相和相之间也达到平衡时必定有定有 据变质量系热力学能方程,有据变质量系热力学能方程,有所以所以 第50页,共52页,编辑于2022年,星期五50因因相和相和相组成孤立体系,与外界无任何质、能交换相组成孤立体系,与外界无任何质、能交换 代入代入dSC的的表达式,经表达式,经整理可得整理可得 所以系统达到平衡时必然有所以系统达到平衡时必然有 第51页,共52页,编辑于2022年,星期五51单元复相系的平衡条件为单元复相系的平衡条件为 热平衡条件热平衡条件 力平衡条件力平衡条件 相平衡条件相平衡条件 即两相之间达到平衡的条件是即两相之间达到平衡的条件是两相具有相同的温度、相同两相具有相同的温度、相同的压力和相同的化学势的压力和相同的化学势。这就意味着处于平衡状态的单元。这就意味着处于平衡状态的单元系各部分之间无任何势差存在。这个结论也可以推广作为系各部分之间无任何势差存在。这个结论也可以推广作为多相平衡共存时的平衡条件。多相平衡共存时的平衡条件。第52页,共52页,编辑于2022年,星期五52