第6章 系统的频域分析PPT讲稿.ppt
第6章 系统的频域分析第1页,共68页,编辑于2022年,星期一连续系统的频率响应连续系统的频率响应虚指数信号虚指数信号e ej jw wt t(-(-t t )通通过系系统的响的响应 任意非周期信号通任意非周期信号通过系系统的响的响应 系系统频响响H(j jw w)的定的定义与物理意与物理意义 H(j jw w)与与h(t)的关系的关系 计算算H(j jw w)的方法的方法第2页,共68页,编辑于2022年,星期一1 1虚指数信号虚指数信号ejw wt(-t)通过连续系统的零通过连续系统的零状态响应状态响应其中第3页,共68页,编辑于2022年,星期一2 2任意非周期信号通过连续系统的零状态响应任意非周期信号通过连续系统的零状态响应若信号f(t)的Fourier变换存在,则可由虚指数信号ejt(-t)的线性组合表示,即由系统的线性时不变特性,可推出信号f(t)作用于系统的零状态响应yf(t)。第4页,共68页,编辑于2022年,星期一即Yf(j)第5页,共68页,编辑于2022年,星期一3 3连续系统的频率响应连续系统的频率响应H(jw w)的定义与的定义与物理意义物理意义系统的幅频特性系统的相频特性H(j)的物理意义:系统把频谱为F(j)的输入改变成频谱为F(j)H(j)的响应,改变的规律完全由H(j)决定。H(jw w)反映了系反映了系统对输入信号不同入信号不同频率分量的率分量的传输特性。特性。H(j)称为系统的频率响应,定义为或Yf(j)=F(j)H(j)第6页,共68页,编辑于2022年,星期一4 4H(jw w)与与h(t)的关系的关系即H(j)等于系统单位冲激响应h(t)的Fourier变换由H(j)的定义,显然有第7页,共68页,编辑于2022年,星期一5 5计算计算H(jw w)的方法的方法由系统的动态方程式直接计算;由系统的冲激响应的傅立叶变换计算;由电路的零状态频域电路模型计算。第8页,共68页,编辑于2022年,星期一例1已知某LTI系统的动态方程为y(t)+3y(t)+2y(t)=f(t),求系统的频率响应H(j)。解:利用Fourier变换的微分特性,微分方程的频域表示式为由定义可求得第9页,共68页,编辑于2022年,星期一微分方程描述的微分方程描述的LTI系统响应系统响应已知描述系统的微分方程方程两边进行Fourier变换,并利用时域微分特性,有解此代数方程即可求得系统的频率响应为第10页,共68页,编辑于2022年,星期一例2已知某LTI系统的冲激响应为h(t)=(e-t-e-2t)u(t),求系统的频率响应H(j)。解:利用H(j)与h(t)的关系第11页,共68页,编辑于2022年,星期一例3 图示RC电路系统,激励电压源为f(t),输出电压y(t)为电容两端的电压vc(t),电路的初始状态为零。求系统的频率响应H(j)和单位冲激响应h(t)。解:RC电路的频域(相量)模型如右图,由电路基本原理有由Fourier反变换,得系统的单位冲激响应h(t)为第12页,共68页,编辑于2022年,星期一RC电路系统的幅度响应随着频率的增加,系统的幅度响应|H(j)|不断减小,说明信号的频率越高,信号通过该系统的损耗也就越大。由于|H(j(1/RC)|=0.707,所以把c=1/RC称为该系统的3dB截频。低通滤波器第13页,共68页,编辑于2022年,星期一连续连续LTILTI系统响应的频域分析系统响应的频域分析连续非周期信号通非周期信号通过系系统响响应的的频域分析域分析 连续周期信号通周期信号通过系系统响响应的的频域分析域分析 正弦信号通正弦信号通过系系统的响的响应 任意周期信号通任意周期信号通过系系统的响的响应第14页,共68页,编辑于2022年,星期一已知系统的频率响应对Yf(j)进行Fourier反变换,可得系统零状态响应频域分析方法与卷积积分法的关系系统零状态响应频域分析方法与卷积积分法的关系:(1)两种分析方法实质相同,只不过是采用单元信号不同。(2)分析域不同,卷积积分法时域,频域分析法频域。Fourier变换的时域卷积定理是联系两者的桥梁。一、连续非周期信号通过系统响应的频域分析一、连续非周期信号通过系统响应的频域分析第15页,共68页,编辑于2022年,星期一例1已知某LTI系统的动态方程为y(t)+3y(t)+2y(t)=3f(t)+4f(t),系统的输入激励f(t)=e-3tu(t),求系统的零状态响应yf(t)。解 由于输入激励f(t)的频谱函数为系统的频率响应由微分方程可得故系统的零状态响应yf(t)的频谱函数Yf(j)为第16页,共68页,编辑于2022年,星期一二、周期信号通过系统响应的频域分析二、周期信号通过系统响应的频域分析1.正弦信号通过系统的响应由Euler公式可得由虚指数信号ejt作用在系统上响应的特点及系统的线性特性,可得零状态响应 为第17页,共68页,编辑于2022年,星期一同理结论:正、余弦信号作用于线性时不变系统时,其输出的零状态响应y(t)仍为同频率的正、余弦信号。输出信号的幅度y(t)由系统的幅度函数|H(j0)|确定,输出信号的相位相对于输入信号偏移了 第18页,共68页,编辑于2022年,星期一2.2.任意周期信号通过系统的响应任意周期信号通过系统的响应将周期为T0的周期信号f(t)用Fourier级数展开为因为故由系统的线性特性可得周期信号f(t)通过频率响应为H(j)的系统的响应为若f(t)、h(t)为实函数,则有第19页,共68页,编辑于2022年,星期一例2求图示周期方波信号通过系统H(j)=1/(a+j)的响应y(t)。解:对于周期方波信号,其Fourier系数为可得系统响应y(t)为由第20页,共68页,编辑于2022年,星期一系统响应频域分析小结系统响应频域分析小结优点点:求解系统的零状态响应时,可以直观地体现信号通过系统后信号频谱的改变,解释激励与响应时域波形的差异,物理概念清楚。不足不足:(1)只能求解系统的零状态响应,系统的零输入响应仍按时域方法求解。(2)若激励信号不存在傅立叶变换,则无法利用频域分析法。(3)频域分析法中,傅立叶反变换常较复杂。解决方法解决方法:采用拉普拉斯变换第21页,共68页,编辑于2022年,星期一无失真传输系统与理想滤波器无失真传输系统与理想滤波器无失真无失真传输系系统 理想理想滤波器的波器的频响特性响特性 理想低通理想低通滤波器波器 冲激响应 阶跃响应第22页,共68页,编辑于2022年,星期一无失真传输系统无失真传输系统若输入信号为f(t),则无失真传输系统的输出信号y(t)应为K为正常数,td是输入信号通过系统后的延迟时间。时域特性频域特性其幅度响应和相位响应分别为第23页,共68页,编辑于2022年,星期一无失真传输系统的幅度和相位响应无失真传输系统应满足两个条件:(1)系统的幅频响应|H(j)|在整个频率范围内应为常数K,即系统的带宽为无穷大;(2)系统的相位响应f(j)在整个频率范围内应与成正比。第24页,共68页,编辑于2022年,星期一例1已知一LTI系统的频率响应为(1)求系统的幅度响应|H(j)|和相位响应f(),并判断系统是否为无失真传输系统。(2)当输入为f(t)=sint+sin3t (-t)时,求系统的稳态响应。解:(1)因为所以系统的幅度响应和相位响应分别为系统的幅度响应|H(j)|为常数,但相位响应f()不是的线性函数,所以系统不是无失真传输系统。(2)第25页,共68页,编辑于2022年,星期一例1的输入和输出信号波形显然,输出信号相对于输入信号产生了失真。输出信号的失真是由于系统的非非线性相位性相位引起的。第26页,共68页,编辑于2022年,星期一理想滤波器的频响特性理想滤波器的频响特性滤波器是指能使信号的一部分频率通过,而使另一部分频率通过很少的系统。理想低通理想高通理想带通理想带阻第27页,共68页,编辑于2022年,星期一理想低通滤波器理想低通滤波器截止角频率幅频响应|H(j)|在通带0c 恒为1,在通带之外为0。相频响应f()在通带内与成线性关系第28页,共68页,编辑于2022年,星期一1 理想低通理想低通滤波器的波器的冲激响应冲激响应第29页,共68页,编辑于2022年,星期一理想低通滤波器冲激响应分析(1)h(t)的波形是一个取样函数,不同于输入信号d(t)的波形,有很大的失真。原因:理想低通滤波器是一个带限系统,而冲激信号d(t)的频带宽度为无穷大。减小失真方法:增加理想低通截频c。h(t)的主瓣宽度为2p/c,c越小,失真越大。当c 时,理想低通变为无失真传输系统,h(t)也变为冲激函数。第30页,共68页,编辑于2022年,星期一理想低通滤波器冲激响应分析(2)h(t)主峰出现时刻t=td比输入信号d(t)作用时刻t=0延迟了一段时间td。td是理想低通滤波器相位特性的斜率。(3)h(t)在t0的区间也存在输出,可见理想低通滤波器是一个非因果系统,因而它是一个物理不可实现的系统。第31页,共68页,编辑于2022年,星期一2 理想低通理想低通滤波器的波器的阶跃响应阶跃响应第32页,共68页,编辑于2022年,星期一理想低通滤波器阶跃响应分析(1)阶跃响应g(t)比输入阶跃信号u(t)延迟延迟td。td是理想低通滤波器相位特性的斜率。(2)阶跃响应的建立需要一段时间。阶跃响应从最小值上升到最大值所需时间称为阶跃响应的上升时间上升时间tr。tr=2p/c,即上升时间tr与理想低通截频c成反比。c越大,上升时间就越短,当c 时,tr 0。(3)存在存在 Gibbs现象现象。即在间断点的前后出现了振荡,其振荡的最大峰值约为阶跃突变值的9%左右,且不随滤波器带宽的增加而减小。第33页,共68页,编辑于2022年,星期一结论(1)输出响应的延延迟时间取决于理想低通取决于理想低通滤波器的相波器的相位特性的斜率位特性的斜率。(2)输入信号在通过理想低通滤波器后,输出响应在输入信号不连续点处产生逐渐上升或下降的波形,上升或下降的上升或下降的时间与理想低通与理想低通滤波器的通波器的通频带宽度度成反比成反比。(3)理想低通滤波器的通带宽度与输入信号的带宽不相匹配时,输出就会失真。系系统的的通通带宽度度越越大大于于信信号号的的带宽,则失失真真越越小小,反之,则失真越大。第34页,共68页,编辑于2022年,星期一例求带通信号f(t)=Sa(t)cos2t,-t 3 时,输入信号的所有频率分量都能通过系统,即y(t)=f(t-td)=Sa(t-td)cos2(t-td),-t 2)当c 1时,输入信号的所有频率分量都不能通过系统,即y(t)=0,-t 3)当1 c m各处为零;(2)抽样间隔T需满足 ,2.2.时域取样定理时域取样定理或抽样频率fs需满足 fs 2fm(或s 2 m)。第41页,共68页,编辑于2022年,星期一例 题例1:已知实信号f(t)的最高频率为fm(Hz),试计算 对各信号f(2t),f(t)*f(2t),f(t)f(2t)抽样不混 叠的最小抽样频率。对信号f(2t)抽样时,最小抽样频率为 4fm(Hz);对f(t)*f(2t)抽样时,最小抽样频率为2fm(Hz);对f(t)f(2t)抽样时,最小抽样频率为 6fm(Hz)。解:根据信号时域与频域的对应关系及抽样定理得:第42页,共68页,编辑于2022年,星期一3.3.抽样定理的工程应用抽样定理的工程应用许多实际工程信号不满足带限条件 抗抗 混混 低通滤波器低通滤波器第43页,共68页,编辑于2022年,星期一混叠误差与截断误差比较混叠误差与截断误差比较第44页,共68页,编辑于2022年,星期一思考题思考题(1)根据根据时域抽域抽样定理,定理,对连续时间信号信号进行抽行抽 样时,只需抽,只需抽样速率速率 fs 2fm。在工程在工程应用中,抽用中,抽样速率常速率常设为 fs (35)fm,为什么?什么?(2)若若连续时间信号信号 f(t)的最高的最高频率率fm未知,未知,如何确定抽如何确定抽样间隔隔T?第45页,共68页,编辑于2022年,星期一4.4.信号重建信号重建信号重建模型第46页,共68页,编辑于2022年,星期一由抽由抽样信号信号fs(t)恢复恢复连续信号信号f(t)hr(t)第47页,共68页,编辑于2022年,星期一抽抽样定理的定理的实际应用用举例例A/DH(z)D/Af(t)fkyky(t)利用离散系统处理连续时间信号利用离散系统处理连续时间信号 生物医学信号处理生物医学信号处理第48页,共68页,编辑于2022年,星期一生物医学信号处理生物医学信号处理生物神生物神经细胞(元)胞(元)结构构图 第49页,共68页,编辑于2022年,星期一生物医学信号处理生物医学信号处理AdLink PCI 9112 A/D,D/A CardPersonal Computers In Window Operation EnvironmentsAIAODOABCBDB生物信号采集系生物信号采集系统组成框成框图 第50页,共68页,编辑于2022年,星期一生物医学信号处理生物医学信号处理生物信号采集系生物信号采集系统接口接口 第51页,共68页,编辑于2022年,星期一生物医学信号处理生物医学信号处理采集的生物信号的模式采集的生物信号的模式识别第52页,共68页,编辑于2022年,星期一生物医学信号处理生物医学信号处理神经元等效电路 Gion1 Gion2 Gionm Eion1 Eion2 Eionm CM Iex Ges1 Ges2 Gesn V1 V2 Vn Gcs1,1 Gcs1,2 Gcs1,p Ecs1,1 Ecs1,2 Ecs1,p Gcsn,1 Gcsn,2 Gcsn,p Ecsn,1 Ecsn,2 Ecsn,p Ionic conductances Electrical synapses(es)Chemical synapses(cs)+第53页,共68页,编辑于2022年,星期一信号与系统频域分析的应用信号与系统频域分析的应用调制解调调制解调双边带调幅(DSB AMSC)同步解调 单边带调幅(SSB AMSC)频分复用 时分复用第54页,共68页,编辑于2022年,星期一一、双边带调幅(Amplitute Modulation)Amplitute Modulation)信号 的频谱分析第55页,共68页,编辑于2022年,星期一双边带调幅中各信号频谱双边带调幅中各信号频谱第56页,共68页,编辑于2022年,星期一二、同步解调二、同步解调第57页,共68页,编辑于2022年,星期一第58页,共68页,编辑于2022年,星期一三、单边带幅度调制三、单边带幅度调制第59页,共68页,编辑于2022年,星期一单边带幅度调制已调信号的解调单边带幅度调制已调信号的解调第60页,共68页,编辑于2022年,星期一单边带幅度调制实现单边带幅度调制实现方法一:采用带通滤波器方法二:利用希尔伯特(Hilbert)变换第61页,共68页,编辑于2022年,星期一采用带通滤波器实现单边带幅度调制的谱分析采用带通滤波器实现单边带幅度调制的谱分析第62页,共68页,编辑于2022年,星期一利用希尔伯特变换实现单边带幅度调制的谱分析利用希尔伯特变换实现单边带幅度调制的谱分析第63页,共68页,编辑于2022年,星期一利用希尔伯特变换单边带幅度调制的频谱利用希尔伯特变换单边带幅度调制的频谱第64页,共68页,编辑于2022年,星期一四、频分复用四、频分复用调制系统第65页,共68页,编辑于2022年,星期一四、频分复用四、频分复用解调系统第66页,共68页,编辑于2022年,星期一五 时分复用原理框图第67页,共68页,编辑于2022年,星期一时分复用时的周期脉冲信号第68页,共68页,编辑于2022年,星期一