ansys复杂几何模型网格划分技术.doc
,网络划分的一点体会-映射网格划分技巧9.将 SOLID95单元转变为 SOLID92单元: Main Menu > Preprocessor > -Meshing - Modify Mesh > Change Tets .10.选择并画出 SOLID95 四面体单元: Utility Menu > Select > Entities .l 选择 “Elements”, “By Attributes”, “Elem type num”GUI: Main Menu>Preprocessor>-Meshing-Mesh>-Volume Sweep-Sweep Opts 6使用extrude命令直接拉伸面网格得到体网格(类似于sweep)定义面单元和体单元类型(注意此时的两种单元要匹配),给面划分网格,使用operateextruelem ext opts在列表的type中选择定义好的体单元类型,在mat中选择相应材料等等,一定要在VAL1中填入拉伸的等分,否则不能拉伸成为有限元模型,modelingoperateextrudeareaalongnormal(也可以是其他)选择要拉伸的有限元面,在dist输入拉伸长度。注意:用此法划分完网格后 要删除体中那个拉伸面的面网格,避免网格重复,使用meshingclearareas。直接通过建立节点,单元建立有限元模型。1. 通过 creteelmentelement attribute 分配属性通过 creteelmentauto numberedthru node 选择响应节点构成单元2.在已存在的选中单元的自由表面覆盖新单元,选中的单元是由所选的节点决定的,而不是单元,如同将压力加载节点上而不是单元上。定义面单元(表面效应单元表面接触单元)sruf151或152等等,通过select选取符合要求的表面节点,在通过creteelemendefault attribute分配属性,然后通过createlementsurf/contact中的响应选项你可以把模型的几个面连接起来,使模型满足映射网格划分的条件连接面的命令:ACCAT,面相加的命令:AADDDGUI方式:Preprocessor|Meshing|Concatenate|Areas Preprocessor|Modeling|Operate|Booleans|Add|Areas网络, 网格, 技巧, 映射, 体会面映射网格包括全部是四边行单元或全部是三角形单元。面接受网格划分必须满足:该面必须是三或着四边的面的对边必须设置为相同数目的单元划分数目面如果有三边,则各边设置的单元划分数必须为偶数且相等网格划分必须设置为映射网格如果一个面多于四边行,不能用映射网格划分,但可以使用LCCAT和LCOMBM命令是边数减少到四条。体映射网格划分要将全体划分为六面体单元,体必须满足条件:体的外形应为块状(有六个面),三棱柱(五个面)或者四面体体的对边上必须划分相同的单元数如果体是棱柱或者四面体,三角形面边界上的单元划分数必须为偶数如果一个面的边数多于四条,可将部分线合并LCOMB或连接LCCAT起来以使总边数降为四。一般来说LCOMB命令优先于LCCAT命令。LCOMB命令可用于相切或不相切的线,节点也不必产生在线的接头。连接线:命令:LCCATGUI: MainMenu>Preprocessor>-Meshing-Mesh>-Areas-Mapped>-oncatenate-Lines。一、 自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。 二、 映射网格划分 映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在ANSYS中,这些条件有了很大的放宽,包括: 1 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用LCCAT命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用AMAP命令定义3到4个顶点(程序自动将两个顶点之间的所有线段联成一条)来进行映射划分。 2 面上对边的网格划分数可以不同,但有一些限制条件。 3 面上可以形成全三角形的映射网格。 4 体可以是四面体、五面体、六面体或其它任意多面体。对于六面以上的多面体,必须用ACCAT命令将某些面联成一个面,以使得对于网格划分而言,仍然是四、五或六面体。 5 体上对应线和面的网格划分数可以不同,但有一些限制条件。 对于三维复杂几何模型而言,通常的做法是利用ANSYS布尔运算功能,将其切割成一系列四、五或六面体,然后对这些切割好的体进行映射网格划分。当然,这种纯粹的映射划分方式比较烦琐,需要的时间和精力较多。 面的三角形映射网格划分往往可以为体的自由网格划分服务,以使体的自由网格划分满足一些特定的要求,比如:体的某个狭长面的短边方向上要求一定要有一定层数的单元、某些位置的节点必须在一条直线上、等等。这种在进行体网格划分前在其面上先划分网格的方式对很多复杂模型可以进行良好的控制,但别忘了在体网格划分完毕后清除面网格(也可用专门用于辅助网格划分的虚拟单元类型MESH200来划分面网格,之后不用清除)。 三、 拖拉、扫略网格划分 对于由面经过拖拉、旋转、偏移(VDRAG、VROTAT、VOFFST、VEXT等系列命令)等方式生成的复杂三维实体而言,可先在原始面上生成壳(或MESH200)单元形式的面网格,然后在生成体的同时自动形成三维实体网格;对于已经形成好了的三维复杂实体,如果其在某个方向上的拓扑形式始终保持一致,则可用(人工或全自动)扫略网格划分(VSWEEP命令)功能来划分网格;这两种方式形成的单元几乎都是六面体单元。通常,采用扫略方式形成网格是一种非常好的方式,对于复杂几何实体,经过一些简单的切分处理,就可以自动形成规整的六面体网格,它比映射网格划分方式具有更大的优势和灵活性。 四、 混合网格划分 混合网格划分即在几何模型上,根据各部位的特点,分别采用自由、映射、扫略等多种网格划分方式,以形成综合效果尽量好的有限元模型。混合网格划分方式要在计算精度、计算时间、建模工作量等方面进行综合考虑。通常,为了提高计算精度和减少计算时间,应首先考虑对适合于扫略和映射网格划分的区域先划分六面体网格,这种网格既可以是线性的(无中节点)、也可以是二次的(有中节点),如果无合适的区域,应尽量通过切分等多种布尔运算手段来创建合适的区域(尤其是对所关心的区域或部位);其次,对实在无法再切分而必须用四面体自由网格划分的区域,采用带中节点的六面体单元进行自由分网(自动退化成适合于自由划分形式的单元),此时,在该区域与已进行扫略或映射网格划分的区域的交界面上,会自动形成金字塔过渡单元(无中节点的六面体单元没有金字塔退化形式)。ANSYS中的这种金字塔过渡单元具有很大的灵活性:如果其邻接的六面体单元无中节点,则在金字塔单元四边形面的四条单元边上,自动取消中间节点,以保证网格的协调性。同时,应采用前面描述的TCHG命令来将退化形式的四面体单元自动转换成非退化的四面体单元,提高求解效率。如果对整个分析模型的计算精度要求不高、或对进行自由网格划分区域的计算精度要求不高,则可在自由网格划分区采用无中节点的六面体单元来分网(自动退化成无中节点的四面体单元),此时,虽然在六面体单元划分区和四面体单元划分区之间无金字塔过渡单元,但如果六面体单元区的单元也无中节点,则由于都是线性单元,亦可保证单元的协调性。 五、 利用自由度耦合和约束方程 对于某些形式的复杂几何模型,可以利用ANSYS的约束方程和自由度耦合功能来促成划分出优良的网格并降低计算规模。比如,利用CEINTF命令可以将相邻的体在进行独立的网格划分(通常是采用映射或扫略方式)后再"粘结"起来,由于各个体之间在几何上没有联系,因此不用费劲地考虑相互之间网格的影响,所以可以自由地采用多种手段划分出良好的网格,而体之间的网格"粘结"是通过形函数差值来进行自由度耦合的,因此连接位置处的位移连续性可以得到绝对保证,如果非常关注连接处的应力,可以如下面所述再在该局部位置建立子区模型予以分析。再如,对于循环对称模型(如旋转机械等),可仅建立一个扇区作为分析模型,利用CPCYC命令可自动对扇区的两个切面上的所有对应节点建立自由度耦合条件(用MSHCOPY命令可非常方便地在两个切面上生成对应网格)。 六、 利用子区模型等其它手段 子区模型是一种先总体、后局部的分析技术(也称为切割边界条件方法),对于只关心局部区域准确结果的复杂几何模型,可采用此手段,以尽量小的工作量来获得想要的结果。其过程是:先建立总体分析模型,并忽略模型中的一系列细小的特征,如导角、开孔、开槽等(因为根据圣维南原理,模型的局部细小改动并不特别影响模型总的分析结果),同时在该大模型上划分较粗的网格(计算和建模的工作量都很小),施加载荷并完成分析;其次,(在与总体模型相同的坐标系下)建立局部模型,此时将前面忽略的细小特征加上,并划分精细网格(模型的切割边界应离关心的区域尽量远),用CBDOF等系列命令自动将前面总体模型的计算结果插值作为该细模型的边界条件,进行求解计算。该方法的另外好处是:可以在小模型的基础上优化(或任意改变)所关心的细小特征,如改变圆角半径、缝的宽度等;总体模型和局部模型可以采用不同的单元类型,比如,总体模型采用板壳单元,局部模型采用实体单元等。 子结构(也称超单元)也是一种解决大型问题的有效手段,并且在ANSYS中,超单元可以用于诸如各种非线性以及装配件之间的接触分析等,有效地降低大型模型的求解规模。 巧妙地利用结构的对称性对实际工作也大有帮助,对于常规的结构和载荷都是轴对称或平面对称的问题,毫无疑问应该利用其对称性,对于一些特殊情况,也可以加以利用,比如:如果结构轴对称而载荷非轴对称,则可用ANSYS专门用于处理此类问题的25、83和61号单元;对于由多个部件构成装配件,如果其每个零件都满足平面对称性,但各对称平面又不是同一个的情况下,则可用多个对称面来处理模型(或至少可用此方法来减少建模工作量:各零件只需处理一半的模型然后拷贝或映射即可生成总体模型)。 总之,对于复杂几何模型,综合运用多种手段建立起高质量、高计算效率的有限元模型是极其重要的一个步骤,这里介绍的注意事项仅仅是很少一部分,用户自己通过许多工程问题的不断摸索、总结和验证才是最能保证有效而高效地处理复杂模型的手段4、网格孔洞的检查:如果环绕网格内部空腔的单元面数量很少,可能说明这里存在一个或几个偶然遗漏的单元,而不是用户故意形成的孔洞。此时,MCHECK命令会给出警告。在这种情况下,环绕空腔的单元数量将与a)或b)中的较小值做比较。a)单个单元面数的三倍,b)模型中单元总面数的十分之一。与CHECK命令类似,MCHECK提供了一个选项,利用它可以不选择所有划分正确的单元,这样可以是划分有问题的单元突出的显示出来。使用Lab=ESEL就可以不选择划分正确的网格。检查网格的连接性:命令: MCHECK,LabGUI: Main Menu>Preprocessor>Check Mesh>Check ConnectivityANSYS/LS-DYNA自适应网格划分2007年11月12日 星期一 下午 05:46在金属成形和高速撞击分析中,物体要经历很大的塑性变形。单积分点显式单元,常用于大变形,但是在这种情况下,由于单元纵横比不合适可能给出不精确的结果。为了解决这一问题,ANSYS/LS-DYNA程序可以在分析过程中自动重新划分表面来改善求解精度。这一功能,即自适应网格划分,由 EDADAPT 和 EDCADAPT 命令控制。EDADAPT 命令在一个指定的PART内激活自适应网格划分。(用 EDPART 命令创建或显示有效PART IDs),例如,为了给PART1打开自适应网格划分,可以执行下列命令:EDADAPT,1,ON注意自适应网格划分功能仅对包含SHELL163单元的部件有效。当此项功能打开时,分析中该部件的网格将自动重新生成。从而保证在整个变形过程中有合适的单元纵横比。自适应网格划分一般应用在大变形分析例如金属变形中(调节网格最典型的应用是板料)。在一个模型中要在多个部件上应用此功能,必须对每个不同的PART ID执行EDADAPT 命令。缺省时,该功能是关闭的。在指定哪些部件重新划分后,必须用 EDCADAPT 命令定义网格划分参数。采用 EDADAPT 命令定义需要网格划分的所有PART ID号,用 EDCADAPT 命令对其设置控制选项。EDCADAPT 命令控制的参数如下所示:Frequency(FREQ)- 调节自适应网格划分的时间间隔。例如,假设FREQ设置为0.01,如果单元变形超过指定的角度容差,则其将每隔0.01秒被重新划分一次(假设时间单位为秒)。因为FREQ的缺省值为0.0,所以在分析中应用自适应网格划分时必须指定此项。Angle Tolerance(TOL)-对于自适应网格划分(缺省值为1e31)有一个自适应角度公差。TOL域控制着单元间的纵横比,它对保证结果的精度是非常重要的,如果单元之间的相对角度超过了指定的TOL值,单元将会被重新划分。Adaptivity Option(OPT)- 对于自适应网格划分有两个不同的选项。对于OPT=1,和指定的TOL值相比较的角度变化只是根据初始网格形状计算的。对于OPT=2,和指定的TOL值相比较的角度变化是根据前一次重新划分的网格计算的。Mesh Refinement Levels(MAXLVL)- MAXLVL域控制着整个分析中单元重新划分的次数。对于一个初始单元,MAXLVL=1可以创建一个附加单元,MAXLVL=2允许增加到4个单元,MAXLVL=3允许增加到16个单元。高MAXLVL会得到更精确的结果,但也会明显增加模型规模。RemeshingBirth and Death Times (BTIME and DTIME)-自适应网格划分的生死时间控制着该功能在分析过程中的激活或关闭。例如,如果设置BTIME=.01和DTIME=.1,那么分析中只在.01和.1秒间进行重新网格划分(假设时间单位为秒)。Interval of Remeshing Curve(LCID)-数据曲线把重新划分网格的时间间隔定义为时间的函数。数据曲线的横坐标为时间,而纵坐标为变化的时间间隔。如果这个选项不为0,那么它将代替适应频率(FREQ)。但是要注意,开始第一个自适应性循环仍需要非零FREQ值。Minimum Element Size (ADPSIZE)-根据单元边长设定的最小单元尺寸。如果不定义此参数,边长的限制将被忽略。One or Two Pass Option (ADPASS)-如果ADPASS=0,将使用双通道自适应划分,在重新划分网格后将重复这一计算(缺省值)。如果ADPASS=1,则使用单通道自适应划分,而计算不再重复。关于这两个选项的图形表示,请参看ANSYS/LS-DYNATheoretical Manual 图30.9(a)和30.9(b)。Uniform Refinement Level Flag (IREFLG)-值为1,2,3等,分别允许4,16,64等划分等级。对于每个初始单元都分别生成统一的单元。Penetration FLAG (ADPENE)-根据ADPENE是正(到达)的还是负(穿透)的,当接触表面到达或穿透工具表面时,程序将依据这个值调整网格。自适应细化主要依据加工曲线。如果ADPENE是正的,细化一般发生在接触之前;因此,可能用单通道划分就可以了。(ADPASS=1)Shell Thickness Level (ADPTH)- 绝对薄壳厚度标准,低于该值自适应划分开始。这个选项仅在自适应角度公差不为零的情况下有用。如果期望不改变角度,激活基于厚度的自适应重新划分功能,那么可把TOL设为较大的角度。(如果ADPTH=0.0,不使用这个选项。)