【中考12年】重庆市2001-2012年中考数学试题分类解析 专题12 押轴题.doc
-
资源ID:44921639
资源大小:2.73MB
全文页数:66页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【中考12年】重庆市2001-2012年中考数学试题分类解析 专题12 押轴题.doc
【中考12年】重庆市2001-2012年中考数学试题分类解析 专题12 押轴题一、选择题1. (重庆市2001年4分)已知,在ABC中,C90°,斜边长为,两直角边的长分别是关于x的方程x23(m)x9m0的两个根,则ABC的内切圆面积是【 】A4 B C D2. (重庆市2002年4分)一居民小区有一正多边形的活动场。为迎接“AAPP”会议在重庆的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2m的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12。若每个花台的造价为400元,则建造这些花台共需资金【 】 A 2400元 B 2800元 C 3200元 D 3600元【答案】C。【考点】扇形面积,多边形内角和定理。【分析】应用多边形的内角和为(n2)180°,扇形的面积公式求解:设每个扇形的圆心角为x,多边形为n边形,则花台占地面积总面积=,解得n=8。建造这些花台共需资金=400×8=3200元。故选C。3. (重庆市2003年4分)在平行四边形ABCD中,AB=6,AD=8,B是锐角,将ACD沿对角线AC折叠,点D落在ABC所在平面内的点E处如果AE过BC的中点,则平行四边形ABCD的面积等于【 】A48 B C D4. (重庆市2004年4分)如图,ABC是等腰直角三角形,ACBC,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为【 】 A、 B、 C、 D、5. (重庆市大纲卷2005年4分)如图,DE是ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则等于【 】 A、15 B、14 C、25 D、27【答案】A。【考点】三角形中位线定理,相似三角形的判定和性质,特殊元素法的应用。【分析】DE是ABC的中位线,DEBC,DE=BC。若设ABC的面积是1,根据DEBC,得ADEABC,SADE=。连接AM,根据题意,得SADM=SADE=。DEBC,DM=BC,DN=BN。DN=BD=AD。SDNM=SADM=,S四边形ANME=。SDMN:S四边形ANME=: =1:5。故选A。6. (重庆市课标卷2005年4分)如图,ABC和DEF是两个形状大小完全相同的等腰直角三角形,B=DEF=90°,点B、C、E、F在同一直线上现从点C、E重合的位置出发,让ABC在直线EF上向右作匀速运动,而DEF的位置不动设两个三角形重合部分的面积为,运动的距离为下面表示与的函数关系式的图象大致是【 】AB C D7-1. (重庆市2006年4分)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么他们各掷一次所确定的点P落在已知抛物线上的概率为【 】 A. B. C. D. 7-2. (重庆市2006年4分)已知是关于的一元二次方程的两个不相等的实数根,且满足,则的值是【 】 A. 3或1 B.3 C. 1 D. 3或18. (重庆市2007年4分)如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AEDP,垂足为E设,则能反映与之间函数关系的大致图象是【 】A B C D【答案】C。9. (重庆市2008年4分)如图,在直角梯形ABCD中,DCAB,A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是【 】A、 B、 C、 D、【答案】D。【考点】动点问题的函数图象,直角梯形的判定和性质。【分析】在直角梯形ABCD中,DCAB,A=90°,四边形ANMD也是直角梯形。它的面积为(DM+AN)×AD。DM=t,AN=282t,AD=4,四边形AMND的面积y=(t282t)·4=2t+56。当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,当N点到达A点时,2t=28,t=14。自变量t的取值范围是0t14。故选D。10. (重庆市2009年4分)如图,在等腰中,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化的过程中,下列结论:是等腰直角三角形;四边形CDFE不可能为正方形,DE长度的最小值为4;四边形CDFE的面积保持不变;CDE面积的最大值为8其中正确的结论是【 】ABCD11. (重庆市2010年4分)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AEAP1,PB下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPDSAPB1;S正方形ABCD4其中正确结论的序号是【 】 A B C D如图,连接BD,在RtAEP中,AE=AP=1,EP=。又PB=,BE=。APDAEB,PD=BE=。SABPSADP=SABDSBDP=S正方形ABCD×DP×BE=。故不正确。EF=BF=,AE=1,在RtABF中,S正方形ABCD= 。故正确。综上所述,正确结论的序号是。故选D。12. (重庆市2011年4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=3其中正确结论的个数是【 】A、1B、2 C、3D、413. (重庆市2012年4分)已知二次函数的图象如图所示对称轴为。下列结论中,正确的是【 】A B C D【答案】D。二、填空题1. (重庆市2001年4分)市场调查表明:某种商品的销售率y(销售率)与价格倍数x(价格倍数)的关系满足函数关系(0.8x6.8)根据有关规定,该商品售价不得超过进货价格的2倍某商场希望通过该商品获取50的利润,那么该商品的价格倍数应定为 【答案】。【考点】一次函数的应用,解一元二次方程。【分析】根据题意,依据50%的利润,借助于关系式,列出方程求解即可:设利润为z,进价是a,进货是b,则,即xy1=50%。,解得x=5(舍去),x=。因此价格倍数应定为。2. (重庆市2002年4分)如图,四边形ABCD内接于O,AD/BC,弧AB+弧CD=弧AD+弧BC,若AD=4,BC=6,则四边形ABCD的面积为 。【答案】25。3. (重庆市2003年4分)把一个半径为8cm的圆形纸片,剪去一个圆心角为90°的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为 【答案】。【考点】弧长的计算,勾股定理。【分析】设圆锥的底面半径为r,则。解得r=6。 根据勾股定理得到:锥高=(cm)。4. (重庆市2004年4分)某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款 元。5. (重庆市大纲卷2005年3分)如图,四边形ABCD是O的内接正方形,P是的中点,PD与AB交于E点,则 。【答案】。【考点】垂径定理,圆周角定理,正方形的性质,勾股定理,相似三角形的判定和性质。【分析】连接OP,交AB于点F,连接AC。根据垂径定理的推论,得OPAB,AF=BF。根据90°的圆周角所对的弦是直径,则AC为直径。设正方形的边长是1,则AC=,圆的半径是 。根据正方形的性质,得OAF=45°,OF=,PF=。OPAD,PEFDEA。6. (重庆市课标卷2005年3分)已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P,第2次从点P出发按乙方式运动到点P,第3次从点P出发再按甲方式运动到点P,第4次从点P出发再按乙方式运动到点P,依此运动规律,则经过第11次运动后,动点P所在位置P的坐标是 7. (重庆市2006年3分)如图,ABC内接于O,A所对弧的度数为120°.ABC、ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:;BC=BD;EF=FD;BF=2DF.其中结论一定正确的序号数是 【答案】。【考点】圆周角定理,角平分线的性质,等腰三角形的判定,锐角三角函数定义,特殊角的三角函数值,全等三角形的判定和性质。【分析】A所对弧的度数为120°,A=60°。ABC+BCA=180°A=120°。ABC、ACB的角平分线分别是BD,CE,CBF+BCF=(ABC+BCA)=60°=BFE。cosBFE=;故正确。8. (重庆市2007年3分)已知:如图,AB为的直径,AB=AC,BC交于点D,AC交于点E,给出以下五个结论:;BD=DC;AE=2EC;劣弧是劣弧的2倍;AE=BC其中正确结论的序号是 【答案】。【考点】弧、弦、圆心角的关系,圆周角定理,等腰三角形的性质,三角形内角和定理,【分析】连接AD。AB是O的直径,AEB=ADB=90°。AB=AC,BAC=45°,点O是AB的中点。ABE=45°,C=ABC=。AE=BE,EBC=90°-67.5°=22.5°,DB=CD。故正确。ABE=45°,EBC=22.5°。故正确。劣弧等于劣弧,又AD平分BAC,所以,即劣弧是劣弧的2倍。故正确。EBC=22.5°,BECE,BE2EC。AE2EC。故错误。BEC=90°,BCBE。又AE=BE,BCAE。故错误。故答案为:。9. (重庆市2008年3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:AGD=112.5°;tanAED=2;SAGD=SOGD;四边形AEFG是菱形;BE=2OG.其中正确结论的序号是 .AG=FGOG,AGD与OGD同高,SAGDSOGD,所以错误。根据题意可得:AE=EF,AG=FG。又EFAC,FEG=AGE。又AEG=FEG,AEG=AGE。AE=AG=EF=FG。四边形AEFG是菱形。因此正确。由折叠的性质不妨设BF=EF=AE=1,则AB=1+,BD=2+,DF=1+。EFAC,DOGDFE。在RtBEF中,EBF=45°,BEF是等腰直角三角形。同理可证OFG是等腰直角三角形。在等腰直角三角形BEF和等腰直角三角形OFG中,BE=2OG。因此正确。 综上所述,正确。10. (重庆市2009年4分)某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加 %11. (重庆市2010年4分)含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是 千克12. (重庆市2011年4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵【答案】4380。13. (重庆市2012年4分)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌规定每人最多两种取法,甲每次取4张或(4k)张,乙每次取6张或(6k)张(k是常数,0k4)经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张【答案】108。【考点】分类归纳(数字的变化类)。【分析】设甲a次取(4k)张,乙b次取(6k)张,则甲(15a)次取4张,乙(17b)次取6张。甲共取牌(60ka)张,乙共取牌(102kb)张。两人总共取牌:N=(60ka)+(102kb)=162k(a+b)张。要使牌最少,即要使N最小。k为正数,要使N最小,只要a+b最大。由题意得,a15,b16,又最终两人所取牌的总张数恰好相等,k(ba)=42。又0k4,ba为整数,由整除的知识, k1,2,3。当k=1时,ba=42,因为a15,b16,所以这种情况舍去;当k=2时,ba=21,因为a15,b16,所以这种情况舍去;当k=3时,ba=14,此时可以符合题意。要保证a15,b16,ba=14,(a+b)值最大,b=16,a=2或b=15,a=1或b=14,a=0。当b=16,a=2时,a+b=18;当b=15,a=1时,a+b=16;当b=14,a=0时,a+b=14;当b=16,a=2时,a+b最大。k=3,(a+b)=18,N=3×18+162=108(张)。满足条件的纸牌最少有108张。三、解答题1. (重庆市2001年10分)如图,在平面直角坐标系中,A、B是x轴上的两点,C是y轴上的一点ACB90°,CAB30°,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0,)(1)求图象过A、B、C三点的二次函数的解析式(2)求图象过点E、F的一次函数的解析式故二次函数解析式为。(2)连接OE,作EMx轴于点M。AEO=90°,CAB=30°,OE=2,AOE=60°。OM=,EM=3。E(,3)。同法可得F(,1)。设过EF的直线解析式为y=kxb,解得。图象过点E、F的一次函数的解析式为。2. (重庆市2001年10分)阅读下面材料:在计算3579111315171921时,我们发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的定值具有这种规律的一列数,除了直接相加外,我们还可以用公式来计算它们的和(公式中的n表示数的个数,a表示第一个数的值,d表示这个相差的定值)那么357911131517192110×3×2120用上面的知识解决下列问题为保护长江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林从1995年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为1995、1996、1997三年的坡荒地面积和植树面积的统计数据假设坡荒地全部种上树后,不再水土流失形成新的坡荒地,问到哪一年,可以将全县所有坡荒地全部种上树木1995年1996年1997年每年植树的面积(公顷)l 0001 4001 800植树后坡荒地的实际面积(公顷)25 20024 00022 400【答案】解:设在1995年的基础上,再过x年可以将全县所有的坡荒地全部种上树木。 根据题意,得 即,即,解得x=9或x=14(负值舍去)。答:到2004年,可以将全县所有的坡荒地全部种上树木。3. (重庆市2002年12分)如图,AM是O的直径,过O上一点B作BNAM,垂足为N,其延长线交O于点C,弦CD交AM于点E。 (1)如果CDAB,求证:EN=NM; (2)如果弦CD交AB于点F,且CD=AB,求证:; (3)如果弦CD、AB的延长经线交于点F,且CD=AB,那么(2)的结论是否仍成立?若成立,请证明;若不成立,请说明理由。【答案】解:(1)证明:如图,连接BM, AM是O的直径,ABM=90°。CDAB,BMDC。NBM=NCE。BN=NC(ON是弦心距),NECNMB(ASA)。EN=NM。【分析】(1)求证EN=NM,只要证明NECNMB即可。(2)求证CE2=EFED,只需证FEBBED根据相似三角形的对应边成比例即可求得结论。(3)成立。求证CE2=EFED,只需证BDEFBE,根据相似三角形对应边成比例即可得到结论。4. (重庆市2002年10分)实际测试表明1千克重的干衣物用水洗涤后拧干,湿重为2千克,今用浓度为1%的洗衣粉溶液洗涤0.5千克干衣物,然后用总量为20千克的清水分两次漂洗。假设在洗涤和漂洗的过程中,残留在衣物中的溶液浓度和它所在的溶液中的浓度相等,且每次洗、漂后都需拧干再进入下一道操作。问怎样分配这20千克清水的用量,可以使残留在衣物上的洗衣粉溶液浓度最小,残留在衣物上的洗衣粉有多少毫克(保留3个有效数字)?【答案】解:设第一次放水量为x千克, 则第一次残留浓度=,第二次残留浓度=第一次残留浓度×。求第二次残留浓度最小,则有最小值。当有最大值时,第二次残留浓度最小。,当x=10时,最大。残留洗衣粉=(mg)。5. (重庆市2003年12分)已知抛物线与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1x2,x12x2=0若点A关于y轴的对称点是点D(1)求过点C、B、D的抛物线的解析式;(2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且HBD与CBD的面积相等,求直线PH的解析式 【答案】解:(1)由题意得:。由得:x1=2m8,x2=m+4。将x1、x2代入得:(2m8)(m4)=2m4,整理得:。m1=2,m2=7。x1x2,2m8m+4。m4。m2=7(舍去)。x1=4,x2=2,点C的纵坐标为:2m+4=8。A、B、C三点的坐标分别是A(4,0)、B(2,0)、C(0,8)。又点A与点D关于y轴对称,D(4,0)。设经过C、B、D的抛物线的解析式为:y=a(x2)(x4),将C(0,8)代入上式得:8=a(02)(04),a=1。所求抛物线的解析式为:y=(x2)(x4)即。 (2),顶点P(3,1)。设点H的坐标为H(x0,y0),BCD与HBD的面积相等,|y0|=8。的顶点为P(3,1),y01。故y0=8。将y0=8代入中得:x0=6或x0=0(舍去)。H(6,8)。设直线PH的解析式为:y=kx+b得:,解得:。直线PH的解析式为:y=3x10。6. (重庆市2003年10分)电脑CPU蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”现为了生产某种CPU蕊片,需要长、宽都是1cm的正方形小硅片若干如果晶圆片的直径为10.05cm问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗)【答案】解:可以切割出66个小正方形。理由如下:(1)我们把10个小正方形排成一排,看成一个长条形的矩形,这个矩形刚好能放入直径为10.05cm的圆内,如图中矩形ABCD。BC=10AB=10,对角线AC2=100+1=10110.052。(2)我们在矩形ABCD的上方和下方可以分别放入9个小正方形。新加入的两排小正方形连同ABCD的一部分可看成矩形EFGH,矩形EFGH的长为9,高为3,对角线EG2=92+32=81+9=9010.052但是新加入的这两排小正方形不能是每排10个,因为:102+32=100+9=10910.052。7. (重庆市2004年12分)如图,AB、CD是两个过江电缆的铁塔,塔AB高40米,AB的中点为P,塔底B距江面的垂直高度为6米。跨江电缆因重力自然下垂近似成抛物线形,为了保证过往船只的安全,电缆下垂的最低点距江面的高度不得少于30米。已知:人在距塔底B点西50米的地面E点恰好看到点E、P、C在一直线上;再向西前进150米后从地面F点恰好看到点F、A、C在一直线上。(1)求两铁塔轴线间的距离(即直线AB、CD间的距离);(2)若以点A为坐标原点,向东的水平方向为x轴,取单位长度为1米,BA的延长方向为y轴建立坐标系。求刚好满足最低高度要求的这个抛物线的解析式。【答案】解:如图,AB=40米,BP=20米,BE=50米,BF=50+150=200(米)。 设CD的延长线交地平面于点H。设抛物线顶点为P(x0,y0),要求最低点高于地面为30-6=24(米),点A高度为40米,y0=16。设过点A的抛物线解析式为y=ax2+bx(a0),则该抛物线满足:,解得或。抛物线的对称轴在y轴的右侧,有0,而a0,b0。故舍去。答:所求抛物线的解析式为。8. (重庆市2004年12分)如图,在直角坐标系中,正方形ABOD的边长为,O为原点,点B在轴的负半轴上,点D在轴的正半轴上,直线OE的解析式为,直线CF过轴上的一点C(,0)且与OE平行,现正方形以每秒的速度匀速沿轴正方向平行移动,设运动时间为秒,正方形被夹在直线OE和CF间的部分的面积为S。(1)当04时,写出S与的函数关系式。(2)当45时,写出S与的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由。由y=2x知:NQ=2NP,NPQ面积=。S=。(2)当4t5时,如图2,这时正方形移动到A1B1MN,当4t5时,点B1在C、O点之间,夹在两平行线间的部分是B1OQNGR,即平行四边形COPG被切掉了两个小三角形NPQ和CB1R,其面积为:平行四边形COPG的面积NPQ的面积CB1R的面积。与(1)同理,OM=,NP=,。CO=,CM=,B1M=a,CB1=CMB1M=,。当t= 时,S有最大值,Smax= 。9. (重庆市大纲卷2005年10分)已知抛物线与轴交于A、B两点,且点A在轴的负半轴上,点B在轴的正半轴上。(1)求实数的取值范围;(2)设OA、OB的长分别为、,且15,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的D与轴的正半轴交于P点,过P点作D的切线交轴于E点,求点E的坐标。【答案】解:(1)设点A(x1,0),B(x2,0)且满足x10x2,由题意可知0,即k2。(2)a:b=1:5,设OA=a,即x1=a,则OB=5a,即x2=5a,a0。,即。解得,(舍去)。k=3。抛物线的解析式为。(3)由(2)可知,当时,可得x1=1,x2=5,A(1,0),B(5,0)。AB=6,则点D的坐标为(2,0)。当PE是D的切线时,PEPD,由RtDPORtDEP可得PD2=ODDE,即32=2×DE,DE=,OE=DEOD=。点E的坐标为(,0)。10. (重庆市大纲卷2005年10分)已知四边形ABCD中,P是对角线BD上的一点,过P作MNAD,EFCD,分别交AB、CD、AD、BC于点M、N、E、F,设PM·PE,PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图1,请判断与的大小关系,并说明理由;(2)当四边形ABCD是平行四边形,且A为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设,是否存在这样的实数,使得?若存在,请求出满足条件的所有的值;若不存在,请说明理由。【答案】解:(1)a=b。理由如下:ABCD是矩形,MNAD,EFCD。四边形PEAM、PNCF也均为矩形。a=PMPE=S矩形PEAM,b=PNPF=S矩形PNCF。又BD是对角线,PMBBFP,PDEDPN,DBADBC。S矩形PEAM=SBDASPMBSPDE, S矩形PNCF=SDBCSBFPSDPN,S矩形PEAM=S矩形PNCF,a=b。(3)存在,理由如下:由(2)可知S平行四边形PEAM=AEAMsinA,S平行四边形ABCD=ADABsinA,。又,即,而,即2k25k2=0。k1=2,k2=。故存在实数k=2或,使得。【考点】矩形的判定和性质,平行四边形的性质,锐角三角函数定义。【分析】(1)当四边形ABCD是矩形时,对角线BD把矩形ABCD分成两个全等三角形,即SABD=SBCD,又MNAD,EFCD,所以四边形MBFP和四边形PFCN均为矩形,即SMBF=SBFP,SEPD=SNPD,根据求差法,可知S四边形AMPE=S四边形PFCNA,即a=b。(2)(1)的方法同时也适用于第二问。(3)由(1)(2)可知,任意一条过平行四边形对角线交点的直线将把平行四边形分成面积相等的两部分,利用面积之间的关系即可解答。11. (重庆市课标卷2005年10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒(1) 求直线AB的解析式;(2) 当t为何值时,APQ与AOB相似? (3) 当t为何值时,APQ的面积为个平方单位?【答案】解:(1)设直线AB的解析式为y=kx+b,将点A(0,6)、点B(8,0)代入得,解得。直线AB的解析式为:。(2)设点P、Q移动的时间为t秒,OA=6,OB=8,由勾股定理可得,AB=10。AP=t,AQ=102t。分两种情况,当APQAOB时,即,解得当AQPAOB时,即,解得。综上所述,当或时,以点A、P、Q为顶点的三角形AOB相似。(3)过点Q作QE垂直AO于点M,在RtAOB中,SinBAO,在RtAMQ中,QMAQ·SinBAO(10-2t)·8tSAPQAP·MQt·(8t) 4t解得t2或t3。 当t2或t3时,APQ的面积为个平方单位。12. (重庆市课标卷2005年10分)如图,五边形ABCDE为一块土地的示意图四边形AFDE为矩形,AE=130米,ED=100米,BC截F交AF、FD分别于点B、C,且BF=FC=10米(1)现要在此土地上划出一块矩形土地NPME作为安置区,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当为何值时,安置区的面积y最大,最大面积为多少?(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元为保护环境,建房总面积不得超过安置区面积的50%若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由【答案】解:(1)延长MP交AF于点H,则BHP为等腰直角三角形。 BH=PH=130x,DM=HF=10BH=10(130x)=x120,则。由0PH10得120x130。抛物线y=的对称轴为直线x=110,开口向下,在120x130内,当x=120时,y=取得最大值,其最大值为y=12000()。(2)设有a户非安置户到安置区内建房,政府才能将30户移民农户全部安置。由题意,得,解得。a为整数,到安置区建房的非安置户至少有19户且最多有25户时,政府才能将30户移民农户全部安置;否则,政府就不能将30户移民农户全部安置。13. (重庆市2006年10分)已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和BCD的面积;(注:抛物线的顶点坐标为(3) P是线段OC上的一点,过点P作PH轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标.【答案】解:(1)解方程得, 由,得。点A、B的坐标分别为A(1,0),B(0,5)。将A(1,0),B(0,5)的坐标分别代入,得,解得。抛物线的解析式为。(2)由,令,得,解这个方程,得。C点的坐标为(5,0)。由顶点坐标公式计算,得点D(2,9)。过D作轴的垂线交轴于M。则,【考点】二次函数综合题,一元二次方程的解和解一元二次方程,待定系数法,曲线上点的坐标与方程的关系,分类思想的应用。【分析】(1)由方程解的定义求出点A、B的坐标,用待定系数法即可求得这个抛物线的解析式。 (2)过D作轴的垂线交轴于M,由求解。 (3)分和两种情况讨论。14. (重庆市2006年10分)如图1所示,一张三角形纸片ABC,ACB=,AC=8,BC=6。沿斜边AB的中线CD把这张纸片剪成两个三角形(如图2所示)。将纸片沿直线方向平移(点始终在同一直线上),当点与点B重合时,停止平移。在平移的过程中,交于点E,与分别交于点F、P。当平移到如图3所示位置时,猜想的数量关系,并证明你的猜想;设平移距离为x,重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;对于中的结论是否存在这样的x,使得重复部分面积等于原ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由。(2)在RtABC中,AC=8。BC=6,由勾股定理得AB=10。 。 又,。 在中,到的距离就是ABC的AB边上的高,为。设的边上的高为,易得,即。又,。又,。 ,。而,。(3)存在。当时,即,整理,得,解得,。当或时,重叠部分的面积等于原面积的。15. (重庆市2007年10分)我市某镇组织20辆汽车装运完A,B,C三种脐橙共100吨到外地销售,按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满根据下表提供的信息,解答以下问题:脐橙品种ABC每辆汽车运载量(吨)654每吨脐橙获利(百元)121610(1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值【答案】解:(1)根据题意,装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,那么装运C种脐橙的车辆数为,则有:,整理得:。与之间的函数关系式为。 (3)设利润为W(百元)则:。 W的值随的增大而减小要使利润W最大,则,故选方案一,1408(百元)14.08(万元)。 答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元。【考点】一次函数和一元一次不等式组的应用。【分析】(1)根据“组织20辆汽车装运完A,B,C三种脐橙共100吨”列