欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022届高考数学一轮复习核心素养测评第9章9.9.1圆锥曲线中的定值与定点问题含解析新人教B版.doc

    • 资源ID:44934613       资源大小:442KB        全文页数:9页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022届高考数学一轮复习核心素养测评第9章9.9.1圆锥曲线中的定值与定点问题含解析新人教B版.doc

    核心素养测评 五十六圆锥曲线中的定值与定点问题(25分钟50分)一、选择题(每小题5分,共20分)1.若动圆C的圆心在抛物线y2=4x上,且与直线l:x=-1相切,则动圆C必过一个定点,该定点坐标为()A.(1,0)B.(2,0)C.(0,1)D.(0,2) 【解析】选A.由题得,圆心在y2=4x上,它到直线l的距离为圆的半径,l为y2=4x的准线,由抛物线的定义可知,圆心到准线的距离等于其到抛物线焦点的距离,故动圆C必过的定点为抛物线焦点,即点(1,0).2.如图,过抛物线y2=4x焦点F的直线依次交抛物线与圆(x-1)2+y2=1于A,B,C,D,则|AB|·|CD|=()A.4B.2C.1D.【解析】选C.抛物线焦点为F(1,0),|AB|=|AF|-1=xA,|CD|=|DF|-1=xD,于是|AB|·|CD|=xA·xD=1.3.直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点,若直线OA,OB的斜率分别为k1,k2,且满足k1k2=,则直线l过定点()A.(-3,0)B.(0,-3)C.(3,0)D.(0,3)【解析】选A.设A(x1,y1),B(x2,y2),因为k1k2=,所以·=.又=2x1,=2x2,所以y1y2=6.设直线l:x=my+b,代入抛物线C:y2=2x得y2-2my-2b=0,所以y1y2=-2b=6,得b=-3,即直线l的方程为x=my-3,所以直线l过定点(-3,0).4.(多选)如图,已知椭圆C1:+y2=1,过抛物线C2:x2=4y的焦点F的直线交抛物线于M,N两点,连接NO,MO并延长分别交C1于A,B两点,连接AB,OMN与OAB的面积分别记为SO M N,SOAB.则在下列说法中,正确的是()A.若记直线NO,MO的斜率分别为k1,k2,则k1k2的大小是定值为-B.OAB的面积SOAB是定值1C.线段OA,OB长度的平方和|OA|2+|OB|2是定值5D.设=,则2【解析】选ABCD. F(0,1),设直线MN的方程为y=kx+1,M(x1,y1),N(x2,y2).联立方程组消元得:x2-4kx-4=0,所以x1+x2=4k,x1x2=-4,所以y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=1,所以k1k2=·=-,故A正确;设直线OA的方程为y=mx(m>0),则直线OB的方程为y=-x,联立方程组解得x2=,不妨设A在第三象限,则A,用-替换m可得B,所以A到OB的距离d=,又|OB|=,所以SOAB=·|OB|·d=··=1,故B正确;又|OA|2=+=,|OB|2=,所以|OA|2+|OB|2=5,故C正确;联立方程组可得x(x-4m)=0,故N(4m,4m2),所以|ON|=4m,-替换m可得M,所以M到直线OA的距离h=,所以SO M N=·|ON|·h=2m=2m+2,当且仅当2m=即m=时取等号.所以=SOMN2,故D正确.二、填空题(每小题5分,共10分)5.已知曲线P上的点到(2,0)的距离比到直线x=-5的距离小3,直线l1与曲线P交于M(x1,y1),N(x2,y2)两点,点P(x3,y3),Q(x4,y4)在曲线P上,若x1,x2,x3,x4均不相等,且kMP=-kNQ,则kMN+kNP+kPQ+kQM=_.世纪金榜导学号 【解析】因为曲线P上的点到(2,0)的距离比到直线x=-5的距离小3,所以曲线P上的点到(2,0)的距离与到直线x=-2的距离相等,故曲线P:y2=8x,则kMN=,同理可得kNP=,kPQ=,kQM=,kMP=,kNQ=,由于kMP=-kNQ,则=-,可得y1+y2+y3+y4=0,由此可得=-,即kQM=-kNP,同理有=-,即kMN=-kPQ,故kMN+kNP+kPQ+kQM=0.答案:06.(2020·西安模拟)已知点A在抛物线C:y2=2px(p>0)的准线上,则抛物线C的方程为_;若点M、N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,动直线MN过定点,定点的坐标是_. 【解析】点A在抛物线C:y2=2px(p>0)的准线上,可得=,解得p=1,所以抛物线C的方程为y2=2x;设直线MN的方程为ty=x-m.M(x1,y1),N(x2,y2).联立化为:y2-2ty-2m=0,所以y1+y2=2t,y1y2=-2m,因为·=3,所以3=y1y2+x1x2=y1y2+(ty1+m)(ty2+m)=(1+t2)y1y2+mt(y1+y2)+m2,所以3=-2m(1+t2)+2mt2+m2,解得m=3或-1(舍去),所以ty=x-3,经过定点(3,0).答案:y2=2x(3,0)三、解答题(每小题10分,共20分)7.(2020·北京模拟)已知椭圆C:+y2=1(a>1)的离心率为.世纪金榜导学号(1)求椭圆C的方程.(2)设直线l过点M(1,0)且与椭圆C相交于A,B两点.过点A作直线x=3的垂线,垂足为D.证明直线BD过x轴上的定点.【解析】(1)由题意可得, 解得a=,b=1,所以椭圆C的方程为+y2=1 .(2)直线BD恒过x轴上的定点(2,0).证明如下:当直线l斜率不存在时,直线l的方程为x=1,不妨设A,B,D.此时,直线BD的方程为:y=(x-2),所以直线BD过定点(2,0).当直线l的斜率存在时,设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-1),D(3,y1).由,得:(1+3k2)x2-6k2x+3k2-3=0.所以x1+x2=,x1x2=.(*)直线BD的方程为:y-y1=(x-3),只需证明直线BD过点(2,0)即可.令y=0,得x-3=-,所以x=即证=2,即证2-x1x2=3.将(*)代入可得2-x1x2=-=3.所以直线BD过点(2,0),综上所述,直线BD恒过x轴上的定点(2,0).8.已知椭圆C1:+=1(a>b>0)的离心率为,椭圆C2:+=1(a>b>0)经过点.世纪金榜导学号(1)求椭圆C1的标准方程.(2)设点M是椭圆C1上的任意一点,射线MO与椭圆C2交于点N,过点M的直线l与椭圆C1有且只有一个公共点,直线l与椭圆C2交于A,B两个相异点,证明:NAB的面积为定值.【解析】(1)因为C1的离心率为,所以=1-,解得a2=3b2.将点代入+=1,整理得+=1.联立,得a2=1,b2=,故椭圆C1的标准方程为x2+=1.(2)当直线l的斜率不存在时,点M为或,由对称性不妨取M,由(1)知椭圆C2的方程为+y2=1,所以有N.将x=1代入椭圆C2的方程得y=±,所以SNAB=·= =+.当直线l的斜率存在时,设其方程为y=kx+m,将y=kx+m代入椭圆C1的方程得x2+6kmx+3m2-1=0,由题意得=-4=0,整理得3m2=1+3k2.将y=kx+m代入椭圆C2的方程,得x2+6kmx+3m2-3=0.设A,B,则x1+x2=-,x1x2=,所以=.设M,N,=,则可得x3=-x0,y3=-y0.因为 ,所以 ,解得=(=-舍去),所以=,从而=.又因为点O到直线l的距离为d=,所以点N到直线l的距离为d=所以SNAB=d·=·· =+.综上,NAB的面积为定值+.- 9 -

    注意事项

    本文(2022届高考数学一轮复习核心素养测评第9章9.9.1圆锥曲线中的定值与定点问题含解析新人教B版.doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开