高中数学第一章导数及其应用1.5定积分的概念黎曼积分素材新人教A版选修2_2.doc
黎曼积分定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间a,b上的矩形累加起来,所得到的就是这个函数的图象在区间a,b的面积。实际上,定积分的上下限就是区间的两个端点a,b.我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分要写成积分的形式呢?定积分的定义设函数f(x) 在区间a,b上连续,将区间a,b分成n个子区间x0,x1, (x1,x2, (x2,x3, , (xn-1,xn,其中x0=a,xn=b。可知各区间的长度依次是:x1=x1-x0, x2=x2-x1, , xn=xn-xn-1。在每个子区间(xi-1,xi中任取一点i(1,2,.,n),作和式 。设=maxx1, x2, , xn(即是最大的区间长度),则当0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间a,b的定积分,记为 :其中:a叫做积分下限,b叫做积分上限,区间a, b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式, 叫做积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数。根据上述定义,若函数f(x)在区间a,b上可积分,则有n等分的特殊分法:特别注意,根据上述表达式有,当a,b区间恰好为0,1区间时,则0,1区间积分表达式为:1