2016年中考数学第01期大题狂做系列专题08含解析.doc
-
资源ID:44983465
资源大小:955KB
全文页数:12页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2016年中考数学第01期大题狂做系列专题08含解析.doc
2016年中考数学大题狂做系列 专题08数学部分说明:根据15年中考试题的数量,一共分为3期,大题狂做每期为10套。由8道解答题组成,时间为50分钟。1. (山东枣庄,第19题,8分)(本题满分8分)先化简,再求值:,其中x满足x²4x+3=0【答案】【解析】考点:分式的混合运算;因式分解;一元二次方程的解法求代数式的求值2.(山东济宁,第17题,7分)(本题满分7分)某学校初三年级男生共200人,随机抽取10名测量他们的身高为(单位:cm):181、176、169、155、163、175、173、167、165、166.(1)求这10名男生的平均身高和上面这组数据的中位数;(2)估计该校初三年级男生身高高于170cm的人数;(3)从身高为181、176、175、173的男生中任选2名,求身高为181cm的男生被抽中的概率.【答案】(1)169cm,168(2)【解析】考点:数据分析3. (山东济南,第24题,8分)(8分)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度【答案】240km/时【解析】试题分析:设普通快车的速度为xkm/时,则高铁列车的平均行驶速度是3xkm/时,根据等量关系:乘坐普通快车所用时间乘坐高铁列车所用时间=4h,列出方程解答即可试题解析:解:设普通快车的速度为xkm/时,由题意得:,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/时考点:分式方程的应用4. (山东滨州第21题,9分)(本小题满分9分)如图,O的直径AB的长为10,弦AC的长为5,ACB的平分线交O于点D.(1)求弧BC的长;(2)求弦BD的长.(第21题图) 【答案】(1)(2)【解析】BOC=2BAC =120°. 考点:圆周角定理,解直角三角形,弧长公式5. (山东淄博,第20题)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?【答案】(1)有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个(2)方案一费用最低,最低费用是22320元【解析】试题分析:(1)设组建中型两类图书角x个、小型两类图书角(30x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组 ,解不等式组然后去整数即可求解(2)根据(1)求出的数,分别计算出每种方案的费用即可考点:一元一次不等式组的应用6.(山东泰安,第26题)(8分)一次函数与反比例函数的图象相交于A(1,4),B(2,n)两点,直线AB交x轴于点D(1)求一次函数与反比例函数的表达式;(2)过点B作BCy轴,垂足为C,连接AC交x轴于点E,求AED的面积S【答案】(1),;(2)【解析】(2)BCy轴,垂足为C,B(2,2),C点坐标为(0,2)设直线AC的解析式为,A(1,4),C(0,2),解得:,直线AC的解析式为,当y=0时,6x2=0,解答x=,E点坐标为(,0),直线AB的解析式为,直线AB与x轴交点D的坐标为(1,0),DE=,AED的面积S=考点:1反比例函数与一次函数的交点问题;2综合题7.(山东烟台,第25题,14分)(本题满分14分)【问题提出】如图,已知ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将BCE绕点C顺时针旋转至ACF,连接EF。试证明:AB=DB+AF。【类比探究】(1)如图,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由。(2)如果点E在线段BA的延长线上,其他条件不变,请在图的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由。【答案】【解析】又A,E,C,F四点共圆,AEF=ACF,又ED=DC,D=BCE,BCE=ACF,D=AEF,EDBFEA,BD=AF,AB=AE+BF,AB=BD+AF由旋转知CBE=CAF=120°,DBE=FAE=60°DEBEFA,BD=AE, EB=AF,BD=FA+AB即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)考点:旋转变化,等边三角形,三角形全等.8.(山东日照,第22题,14分)(14分)如图,抛物线y=x2+mx+n与直线y=x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0)()求抛物线的解析式和tanBAC的值;()在()条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?【答案】()y=x2x+3tanBAC=;()(1)(11,36)、(,)、(,);(2)点E的坐标为(2,1)【解析】()(1)过点P作PGy轴于G,则PGA=90°设点P的横坐标为x,由P在y轴右侧可得x0,则PG=x,易得APQ=ACB=90°若点G在点A的下方,当PAQ=CAB时,PAQCAB此时可证得PGABCA,根据相似三角形的性质可得AG=3PG=3x则有P(x,33x),然后把P(x,33x)代入抛物线的解析式,就可求出点P的坐标当PAQ=CBA时,PAQCBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;(2)过点E作ENy轴于N,如图3易得AE=EN,则点M在整个运动中所用的时间可表示为+=DE+EN作点D关于AC的对称点D,连接DE,则有DE=DE,DC=DC,DCA=DCA=45°,从而可得DCD=90°,DE+EN=DE+EN根据两点之间线段最短可得:当D、E、N三点共线时,DE+EN=DE+EN最小此时可证到四边形OCDN是矩形,从而有ND=OC=3,ON=DC=DC然后求出点D的坐标,从而得到OD、ON、NE的值,即可得到点E的坐标过点B作BHx轴于H,如图1C(3,0),B(4,1),BH=1,OC=3,OH=4,CH=43=1,BH=CH=1BHC=90°,BCH=45°,BC=同理:ACO=45°,AC=3,ACB=180°45°45°=90°,tanBAC=;若点G在点A的下方,如图2,当PAQ=CAB时,则PAQCABPGA=ACB=90°,PAQ=CAB,PGABCA,=AG=3PG=3x则P(x,33x)把P(x,33x)代入y=x2x+3,得x2x+3=33x,整理得:x2+x=0解得:x1=0(舍去),x2=1(舍去)如图2,(2)过点E作ENy轴于N,如图3在RtANE中,EN=AEsin45°=AE,即AE=EN,点M在整个运动中所用的时间为+=DE+EN作点D关于AC的对称点D,连接DE,则有DE=DE,DC=DC,DCA=DCA=45°,DCD=90°,DE+EN=DE+EN根据两点之间线段最短可得:点E的坐标为(2,1)考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判定与性质;轴对称的性质;相似三角形的判定与性质;锐角三角函数的定义12