2014届高考数学一轮 知识点各个击破 第七章 课时跟踪检测(四十五)直线的倾斜角与斜率、直线的方程 文(含解析)新人教A版.doc
课时跟踪检测(四十五)直线的倾斜角与斜率、直线的方程1若k,1,b三个数成等差数列,则直线ykxb必经过定点()A(1,2)B(1,2)C(1,2) D(1,2)2直线2x11y160关于点P(0,1)对称的直线方程是()A2x11y380 B2x11y380C2x11y380 D2x11y1603(2012·衡水模拟)直线l1的斜率为2,l1l2,直线l2过点(1,1)且与y轴交于点P,则P点坐标为()A(3,0) B(3,0)C(0,3) D(0,3)4(2013·佛山模拟)直线axbyc0同时要经过第一、第二、第四象限,则a,b,c应满足()Aab0,bc0 Bab0,bc0Cab0,bc0 Dab0,bc05将直线y3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()Ayx Byx1Cy3x3 Dyx16已知点A(1,2),B(m,2),且线段AB的垂直平分线的方程是x2y20,则实数m的值是()A2 B7C3 D17(2013·贵阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(3,3),则其斜率的取值范围是_8(2012·常州模拟)过点P(2,3)且在两坐标轴上的截距相等的直线l的方程为_9(2012·天津四校联考)不论m取何值,直线(m1)xy2m10恒过定点_10求经过点(2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程11(2012·莆田月考)已知两点A(1,2),B(m,3)(1)求直线AB的方程;(2)已知实数m,求直线AB的倾斜角的取值范围12.如图,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线yx上时,求直线AB的方程1若直线l:ykx与直线2x3y60的交点位于第一象限,则直线l的倾斜角的取值范围是()A. B.C. D.2(2012·洛阳模拟)当过点P(1,2)的直线l被圆C:(x2)2(y1)25截得的弦最短时,直线l的方程为_3已知直线l:kxy12k0(kR)(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设AOB的面积为S,求S的最小值及此时直线l的方程 答 题 栏 A级1._ 2._ 3._ 4._ 5._ 6._ B级1._ 2._ 7. _ 8. _ 9. _ 答 案课时跟踪检测(四十五)A级1A2.B3.D4.A5选A将直线y3x绕原点逆时针旋转90°得到直线yx,再向右平移1个单位,所得直线的方程为y(x1),即yx.6选C线段AB的中点代入直线x2y20中,得m3.7解析:设直线l的斜率为k,则方程为y2k(x1),在x轴上的截距为1,令313,解得k1或k.答案:(,1)8解析:直线l过原点时,l的斜率为,直线方程为yx;l不过原点时,设方程为1,将点(2,3)代入,得a1,直线方程为xy1.综上,l的方程为xy10或2y3x0.答案:xy10或3x2y09解析:把直线方程(m1)xy2m10,整理得(x2)m(xy1)0,则得答案:(2,3)10解:设所求直线方程为1,由已知可得解得或故直线l的方程为2xy20或x2y20.11解:(1)当m1时,直线AB的方程为x1;当m1时,直线AB的方程为y2(x1)(2)当m1时,;当m1时,m1(0, ,k(, ,.综合知,直线AB的倾斜角.12解:由题意可得kOAtan 45°1,kOBtan(180°30°),所以直线lOA:yx,lOB:yx.设A(m,m),B(n,n),所以AB的中点C,由点C在yx上,且A、P、B三点共线得解得m,所以A(, )又P(1,0),所以kABkAP,所以lAB:y(x1),即直线AB的方程为(3)x2y30.B级1选B由解得两直线交点在第一象限,解得k.直线l的倾斜角的范围是.2解析:易知圆心C的坐标为(2,1),由圆的几何性质可知,当圆心C与点P的连线与直线l垂直时,直线l被圆C截得的弦最短由C(2,1),P(1,2)可知直线PC的斜率为1,设直线l的斜率为k,则k×(1)1,得k1,又直线l过点P,所以直线l的方程为xy10.答案:xy103解:(1)证明:法一:直线l的方程可化为yk(x2)1,故无论k取何值,直线l总过定点(2,1)法二:设直线过定点(x0,y0),则kx0y012k0对任意kR恒成立,即(x02)ky010恒成立,x020,y010,解得x02,y01,故直线l总过定点(2,1)(2)直线l的方程为ykx2k1,则直线l在y轴上的截距为2k1,要使直线l不经过第四象限,则解得k的取值范围是0,)(3)依题意,直线l在x轴上的截距为,在y轴上的截距为12k,A,B(0,12k)又<0且12k>0,k>0.故S|OA|OB|×(12k)(44)4,当且仅当4k,即k时,取等号故S的最小值为4,此时直线l的方程为x2y40.5