欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2014届高考数学一轮 知识点各个击破 第二章 课时跟踪检测(十五)导数的应用(一) 文 新人教A版.doc

    • 资源ID:45031119       资源大小:108.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2014届高考数学一轮 知识点各个击破 第二章 课时跟踪检测(十五)导数的应用(一) 文 新人教A版.doc

    课时跟踪检测(十五)导数的应用(一)1函数f(x)xeln x的单调递增区间为()A(0,)B(,0)C(,0)和(0,) DR2(2012·“江南十校”联考)已知定义在R上的函数f(x),其导函数f(x)的大致图象如图所示,则下列叙述正确的是()Af(b)>f(c)>f(d)Bf(b)>f(a)>f(e)Cf(c)>f(b)>f(a)Df(c)>f(e)>f(d)3(2012·陕西高考)设函数f(x)ln x,则()Ax为f(x)的极大值点Bx为f(x)的极小值点Cx2为f(x)的极大值点Dx2为f(x)的极小值点4(2012·大纲全国卷)已知函数yx33xc的图象与x轴恰有两个公共点,则c()A2或2 B9或3C1或1 D3或15若f(x),e<a<b,则()Af(a)>f(b) Bf(a)f(b)Cf(a)<f(b) Df(a)f(b)>16函数f(x)x33x1,若对于区间3,2上的任意x1,x2,都有|f(x1)f(x2)|t,则实数t的最小值是()A20 B18C3 D07已知函数f(x)x3mx2(m6)x1既存在极大值又存在极小值,则实数m的取值范围是_8已知函数f(x)x3ax24在x2处取得极值,若m1,1,则f(m)的最小值为_9已知函数yf(x)x33ax23bxc在x2处有极值,其图象在x1处的切线平行于直线6x2y50,则f(x)极大值与极小值之差为_10已知函数f(x)ax2bln x在x1处有极值.(1)求a,b的值;(2)判断函数yf(x)的单调性并求出单调区间11(2012·重庆高考)设f(x)aln xx1,其中aR,曲线yf(x)在点(1,f(1)处的切线垂直于y轴(1)求a的值;(2)求函数f(x)的极值12已知函数f(x)x3ax23x.(1)若f(x)在x1,)上是增函数,求实数a的取值范围;(2)若x3是f(x)的极值点,求f(x)在x1,a上的最大值和最小值1设函数f(x)ax2bxc(a,b,cR)若x1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是()2(2012·沈阳实验中学检测)已知定义在R上的奇函数f(x),设其导函数为f(x),当x(,0时,恒有xf(x)<f(x),令F(x)xf(x),则满足F(3)>F(2x1)的实数x的取值范围是()A(1,2) B.C. D(2,1)3(2012·湖北高考)设函数f(x)axn(1x)b(x>0),n为正整数,a,b为常数曲线yf(x)在(1,f(1)处的切线方程为xy1.(1)求a,b的值;(2)求函数f(x)的最大值答 题 栏A级1._ 2._ 3._ 4._ 5._ 6._ B级1._ 2._ 7. _ 8. _ 9. _答 案课时跟踪检测(十五)A级1A2.C3.D4.A5选Af(x),当x>e时,f(x)<0,则f(x)在(e,)上为减函数,f(a)>f(b)6选A因为f(x)3x233(x1)(x1),令f(x)0,得x±1,所以1,1为函数的极值点又f(3)19,f(1)1,f(1)3,f(2)1,所以在区间3,2上f(x)max1,f(x)min19.又由题设知在区间3,2上f(x)maxf(x)mint,从而t20,所以t的最小值是20.7解析:f(x)3x22mxm60有两个不等实根,即4m212×(m6)>0.所以m>6或m<3.答案:(,3)(6,)8解析:求导得f(x)3x22ax,由f(x)在x2处取得极值知f(2)0,即3×42a×20,故a3.由此可得f(x)x33x24,f(x)3x26x.由此可得f(x)在(1,0)上单调递减,在(0,1)上单调递增,所以对m1,1时,f(m)minf(0)4.答案:49解析:y3x26ax3b,y3x26x,令3x26x0,则x0或x2.f(x)极大值f(x)极小值f(0)f(2)4.答案:410解:(1)f(x)2ax.又f(x)在x1处有极值.即解得a,b1.(2)由(1)可知f(x)x2ln x,其定义域是(0,),且f(x)x.由f(x)<0,得0<x<1;由f(x)>0,得x>1.所以函数yf(x)的单调减区间是(0,1),单调增区间是(1,)11解:(1)因f(x)aln xx1,故f(x).由于曲线yf(x)在点(1,f(1)处的切线垂直于y轴,故该切线斜率为0,即f(1)0,从而a0,解得a1.(2)由(1)知f(x)ln xx1(x>0),f(x).令f(x)0,解得x11,x2义域内,舍去当x(0,1)时,f(x)<0,故f(x)在(0,1)上为减函数;当x(1,)时,f(x)>0,故f(x)在(1,)上为增函数故f(x)在x1处取得极小值f(1)3.12解:(1)f(x)3x22ax30在1,)上恒成立,amin3(当x1时取最小值)a的取值范围为(,3(2)f(3)0,即276a30,a5,f(x)x35x23x,x1,5,f(x)3x210x3.令f(x)0,得x13,x2(舍去)当1<x<3时,f(x)<0,当3<x<5时,f(x)>0,即当x3时,f(x)取极小值f(3)9.又f(1)1,f(5)15,f(x)在1,5上的最小值是f(3)9,最大值是f(5)15.B级1选D因为f(x)exf(x)exf(x)(ex)f(x)f(x)ex,且x1为函数f(x)ex的一个极值点,所以f(1)f(1)0;选项D中,f(1)>0,f(1)>0,不满足f(1)f(1)0.2选A由F(x)xf(x),得F(x)f(x)xf(x)xf(x)f(x)<0,所以F(x)在(,0)上单调递减,又可证F(x)为偶函数,从而F(x)在0,)上单调递增,故原不等式可化为3<2x1<3,解得1<x<2.3解:(1)因为f(1)b,由点(1,b)在xy1上,可得1b1,即b0.因为f(x)anxn1a(n1)xn,所以f(1)a.又因为切线xy1的斜率为1,所以a1,即a1.故a1,b0.(2)由(1)知,f(x)xn(1x)xnxn1,f(x)(n1)xn1.令f(x)0,解得x,即f(x)在(0,)上有唯一零点x0.在上,f(x)>0,故f(x)单调递增;而在上,f(x)<0,f(x)单调递减故f(x)在(0,)上的最大值为fn.6

    注意事项

    本文(2014届高考数学一轮 知识点各个击破 第二章 课时跟踪检测(十五)导数的应用(一) 文 新人教A版.doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开