【创新设计】(浙江专用)2014届高考数学总复习 第10篇 第1讲 随机抽样限时训练 理.doc
计数原理第1讲随机抽样 分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1若甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面不同的安排方法共有 ()A20种 B30种 C40种 D60种解析分三类:甲在周一,共有A种排法;甲在周二,共有A种排法;甲在周三,共有A种排法;AAA20.答案A2(2013·琼海模拟)某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭则每天不同午餐的搭配方法总数是 ()A210 B420 C56 D22解析由分类加法计数原理:两类配餐方法和即为所求,所以每天不同午餐的搭配方法总数为:CCCC210.答案A3(2013·海口模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团且同学甲不参加“围棋苑”,则不同的参加方法的种数为 ()A72 B108 C180 D216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法, 故共有CCA种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法;综合(1)(2),共有CCACA180种参加方法答案C4如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A60 B48 C36 D24解析长方体的6个表面构成的“平行线面组”有6×636个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×212个,共361248个,故选B.答案B二、填空题(每小题5分,共10分)5(2013·抚州模拟)从集合0,1,2,3,5,7,11中任取3个元素分别作为直线方程AxByC0中的A、B、C,所得的经过坐标原点的直线有_条(用数字表示)解析因为直线过原点,所以C0,从1,2,3,5,7,11这6个数中任取2个作为A、B,两数的顺序不同,表示的直线不同,所以直线的条数为A30.答案306数字1,2,3,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有_种解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×312种填法答案12三、解答题(共25分)7(12分)设集合M3,2,1,0,1,2,P(a,b)是坐标平面上的点,a,bM.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?(3)P可以表示多少个不在直线yx上的点?解(1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N6×636(个)(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N3×26个(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N6×530个8(13分)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法数解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论由题设,四棱锥SABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×360(种)染色方法当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7420(种)法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×32×2)420(种)法三按所用颜色种数分类第一类,5种颜色全用,共有A种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A种不同的方法由分类加法计数原理,得不同的染色方法总数为A2×AA420(种)分层B级创新能力提升1从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ()A300种 B240种 C144种 D96种解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有CACA240.答案B2(2012·安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ()A1或3 B1或4 C2或3 D2或4解析利用排列、组合知识求解设6位同学分别用a,b,c,d,e,f表示若任意两位同学之间都进行交换共进行C15(次)交换,现共进行13次交换,说明有两次交换没有发生,此时可能有两种情况:(1)由3人构成的2次交换,如ab和ac之间的交换没有发生,则收到4份纪念品的有b,c两人(2)由4人构成的2次交换,如ab和ce之间的交换没有发生,则收到4份纪念品的有a,b,c,e四人故选D.答案D3(2013·潍坊期中)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有_个解析当相同的数字不是1时,有C个;当相同的数字是1时,共有CC个,由分类加法计数原理得共有“好数”CCC12个答案124将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有_种解析由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起如图中的,当全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当全为2或3时,分别有2种,所以共有6种;当分别为1,2,3时,也共有6种共12种答案125如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色则不同的涂色方法共有多少种?解先涂A、D、E三个点,共有4×3×224种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×11×2)8种涂法;另一类是B与E或D不同色,共有1×(1×11×2)3种涂法所以涂色方法共有24×(83)264(种)6从1,2,3,9这9个数字中任取2个不同的数分别作为一个对数的底数和真数一共可以得到多少个不同的对数值?其中比1大的有几个?解在2,3,9这8个数中任取2个数组成对数,有A个,在这些对数值中,log24log39,log42log93,log23log49,log32log94,重复计数4个;又1不能作为对数的底数,1作为真数时,不论底数为何值,其对数值均为0.所以,可以得到A4153个不同的对数值要求对数值比1大,分类完成;底数为2时,真数从3,4,5,9中任取一个,有7种选法;底数为3时,真数从4,5,9中任取一个,有6种选法依次类推,当底数为8时,真数只能取9,故有765432128(个)但其中log24log39,log23log49,所以,比1大的对数值有28226(个)5