【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第15讲 立体几何中的有关证明(含详解).doc
-
资源ID:45082893
资源大小:156KB
全文页数:3页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第15讲 立体几何中的有关证明(含详解).doc
立体几何中的有关证明题型预测立体几何中的证明往往与计算结合在一起考查。三垂线定理及其逆定理是重点考查的内容。范例选讲例1 已知斜三棱柱ABC-ABC的底面是直角三角形,C=90°,侧棱与底面所成的角为(0°<<90°),B在底面上的射影D落在BC上。(1)求证:AC面BBCC。(2)当为何值时,ABBC,且使得D恰为BC的中点。讲解:(1) BD面ABC,AC面ABC, BDAC,又ACBC,BCBD=D, AC面BBCC。(2)由三垂线定理知道:要使ABBC,需且只需AB在面BBCC内的射影BCBC。即四边形BBCC为菱形。此时,BC=BB。因为BD面ABC,所以,就是侧棱BB与底面ABC所成的角。由D恰好落在BC上,且为BC的中点,所以,此时=。即当=时,ABBC,且使得D恰为BC的中点。例2 如图:已知四棱锥中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC底面ABCD,E为PC中点。(1)求证:平面EDB平面PBC;(2)求二面角的平面角的正切值。讲解:(1)要证两个平面互相垂直,常规的想法是:证明其中一个平面过另一个平面的一条垂线。首先观察图中已有的直线,不难发现,由于侧面PDC为正三角形,所以,那么我们自然想到:是否有?这样的想法一经产生,证明它并不是一件困难的事情。 面PDC底面ABCD,交线为DC, DE在平面ABCD内的射影就是DC。在正方形ABCD中,DCCB, DECB。又, DE。又面EDB, 平面EDB平面PBC。(2)由(1)的证明可知:DE。所以,就是二面角的平面角。 面PDC底面ABCD,交线为DC,又平面ABCD内的直线CB DC。 CB面PDC。又面PDC, CBPC。在Rt中,。点评:求二面角的平面角,实际上是找到棱的一个垂面,事实上,这个垂面同时垂直于二面角的两个半平面。例3如图:在四棱锥中,平面,为的中点。(1)求证:平面;(2)当点到平面的距离为多少时,平面与平面所成的二面角为?讲解:题目中涉及到平面与平面所成的二面角,所以,应作出这两个平面的交线(即二面角的棱)。另一方面,要证平面,应该设法证明CE平行于面内的一条直线,充分利用中点(中位线)的性质,不难发现,刚刚做出的二面角的棱正好符合要求。(1)延长BC、AD交于点F。在中,所以,AB、CD都与AF垂直,所以,CD/AB,所以,。又,所以,点D、C分别为线段AF、BF的中点。又因为为的中点,所以,EC为的中位线,所以,EC/SF。又,所以,平面。(2)因为:平面,AB平面,所以,AB。又ABAF,所以,AB面。过A作AHSF于H,连BH,则BHSF,所以,就是平面与平面所成的二面角的平面角。在Rt中,要使=,需且只需AH=AB=。此时,在SAF中,所以,。在三棱锥S-ACD中,设点A到面SCD的距离为h,则h=因为AB/DC,所以,AB/面SCD。所以,点A、B到面SCD的距离相等。又因为E为SB中点,所以,点E到平面SCD的距离就等于点B到面SCD距离的一半,即。点评:探索性的问题,有些采用先猜后证的方法,有些则是将问题进行等价转化,在转化的过程中不断探求结论。3