山东省泰安市东平县新湖镇中学七年级数学下册 13.2 多边形(第2课时)教案 (新版)青岛版.doc
-
资源ID:45087805
资源大小:144.50KB
全文页数:4页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省泰安市东平县新湖镇中学七年级数学下册 13.2 多边形(第2课时)教案 (新版)青岛版.doc
13.2多边形(第二课时)(一)思考三角形的内角和等于180°。正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?(二)探究任意画一个四边形,量出它的4个内角,计算它们的和。 再画几个四边形,量一量,算一算。你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?如图7.38,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形。这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°。从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图7.39,请填空:从五边形的一个顶点出发,可以引_条对角线,它们将五边形分为_个三角形,五边形的内角和等于180°×_。从六边形的一个顶点出发,可以引_条对角线,它们将六边形分为_个三角形,六边形的内角和等于180°×_。通过以上问题,你能发现多边形的内角和与边数的关系吗?一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引_条对角线,它们将n边形分为_个三角形,n边形的内角和等于180°×_。总结:过n边形的一个顶点可以做(n3)条对角线,将多边形分成(n2)个三角形,每个三角形内角和180°。所以n边形内角和(n2)×180°。把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗? 方法2:如图:733过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n×180°。再减去以O为顶点的周角。即得n边形内角和n·180°360°。得出了多边形内角和公式:n边形内角和等于(n2)·180°。(三)例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图7.310,四边形ABCD中,AC180°。因为ABCD(42)×180°360°,所以BD360°(AC)=360°180°=180°。这就是说,如果四边形的一组对角互补,那么另一组对角也互补。例2如图7.311,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?分析:考虑以下问题:(1)任何一个外角同与它相邻的内角有什么关系?(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系?联系这些问题,考虑外角和的求法。解:六边形的任何一个外角加上与它相邻的内角,都等于180°。6个外角连同它们各自相邻的内角,共有12个角。这些角的总和等于6×180°。这个总和就是六边形的外角和加上内角和。所以外角和等于总和减去内角和,即外角和等于6×180°(62)×180°2×180°360°。(四)探究如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗?思路:(用计算的方法)设n边形的每一个内角为1,2,3,n,其相邻的外角分别为180°1,180°2,180°3,180°n。外角和为(180°1)(180°2)(180°n)=n×180°(123n)=n×180°(n2)×180°=360°注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想。由上面的探究可以得到:多边形的外角和等于360°。你也可以像以下这样理解为什么多边形的外角和等于360°。如图7.312,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向。在行程中所转的各个角的和,就是多边形的外角和。由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°。(五)练习一起学习课本89页的练习(六)小结引导学生总结本节所学的知识点4