江苏版2018年高考数学一轮复习专题4.7正余弦定理应用测.doc
-
资源ID:45164743
资源大小:166.50KB
全文页数:6页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏版2018年高考数学一轮复习专题4.7正余弦定理应用测.doc
专题4.7 正余弦定理应用一、填空题1已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得ABC120°,则A,C两地间的距离为【解析】如图所示,由余弦定理可得:AC21004002×10×20×cos 120°700,AC10(km)2如图,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为3一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是4一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是【解析】设水柱高度是h m,水柱底端为C,则在ABC中,BAC60°,ACh,AB100,BCh,根据余弦定理得,(h)2h210022·h·100·cos 60°,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m.5如图,某海上缉私小分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是【解析】由题意,知BAC60°30°30°,ABC30°45°75°,则ACB180°75°30°75°,ACAB40×20(km)由余弦定理,得BC2AC2AB22AC·AB·cosBAC2022022×20×20×cos 30°800400400(2),BC10(1)10()km.6.(2016·武汉武昌区调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km处的热带风暴中心正以20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为7.(2016·河南调研)如图,在山底A点处测得山顶仰角CAB45°,沿倾斜角为30°的斜坡走1 000米至S点,又测得山顶仰角DSB75°,则山高BC为_米【答案】1 000【解析】由题图知BAS45°30°15°,ABS45°(90°DSB)30°,ASB135°,在ABS中,由正弦定理可得,AB1 000,BC1 000(米) 8.如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角则从塔BB1的底部看塔AA1顶部的仰角的正切值为_;塔BB1的高为_m.【答案】45【解析】设从塔BB1的底部看塔AA1顶部的仰角为,则AA160tan ,BB160tan 2.从两塔底部连线中点C分别看两塔顶部的仰角互为余角,A1ACCBB1,AA1·BB1900,3 600tan tan 2900,tan ,tan 2,则BB160tan 245(m)9江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距_m.【答案】1010如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为_m(取 1.4, 1.7)【答案】2 650【解析】如图,作CD垂直于AB的延长线于点D,由题意知A15°,DBC45°,ACB30°.AB50×42021 000(m)又在ABC中,BC×sin 15°10 500()CDAD,CDBC·sinDBC10 500()×10 500(1)7 350(m)故山顶的海拔高度h10 0007 3502 650(m)二、解答题11.已知在岛A南偏西38° 方向,距岛A 3海里的B处有一艘缉私艇岛A处的一艘走私船正以10海里/时的速度向岛北偏西22° 方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?12.已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM100米和BN200米,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100米后到达点Q,在点Q处测得发射塔顶B处的仰角为,且BQA,经测量tan 2,求两发射塔顶A,B之间的距离6