上海六学年第二学期数学知识.doc
,上海六年级第二学期数学知识点1.相反意义的量 收入与支出; 增加与减少; 上升与下降; 零上与零下; 高于海平面与低于海平面;前进与后退; 盈利与亏损; 任意规定一方为正,则另一方为负.2.正数与负数 比0大的数叫做正数; 在正数前面加上“一”号的数(小于零的数)叫做负数; 零既不是正数,也不是负数。3.有理数的概念 4.数轴的概念与画法 数轴是规定了原点、正方向和单位长度的直线; 数轴画法:一直线 + 三要素5.数轴的性质 数轴上表示的两个数,右边的数总比左边的数大; 正数都大于零,负数都小于零,正数大于一切负数。6.相反数 只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。7.相反数的几何意义 数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。 8.绝对值的定义(几何意义) 在数轴上把表示数的点与原点的距离叫做数的绝对值,即。是一个非负数,即: 。9.绝对值的代数意义(即:求一个数的绝对值的法则) 一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0。 一对互为相反数的两数的绝对值相等,而绝对值相等的两个数可能相等也可能互为相反数;求一个数的绝对值,应先判断这个数是正数、负数还是零,再根据绝对值的代数意义确定。10.有理数的大小比较 两个负数,绝对值大的反而小; 对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。 比较两个数的大小,还可以用“作差法”,即: 11.有理数加法及加法法则 把两个有理数合成一个有理数的运算,叫做有理数的加法。分五种情况:两个正数相加;两个负数相加;两个异号数相加;有理数和零相加;零和零相加。 有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数与零相加,仍得这个数。注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。12.有理数加法运算律 加法交换律:; 加法结合律:运算律有下列规律:互为相反数的两数可以先相加;符号相同的数可以相加;分母相同的数可以先相加;几个数相加能得到整数的可以先相加。13.有理数的减法法则及运算 法则:减去一个数,等于加上这个数的相反数。 注意:两个“变”字,改变运算符号;改变减数的性质符号(变为相反数), 牢记一个“不变”,被减数与减数的位置不变,即没有交换律。14.有理数乘法的意义 乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。如:个相加等于15.有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。 注意:运算步骤:符号绝对值相乘;带分数要化成假分数16.有理数乘法法则的推广 几个不为0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 几个数相乘,若其中有一个0,则积为零17.有理数的乘法运算律 乘法交换律:;乘法结合律:;乘法对加法的分配律:18.倒数及求法 乘积是1的两个数叫做互为倒数。零无倒数,对于任意数,它的倒数为; 非零整数的倒数为;分数的倒数是;带分数化为假分数后再求倒数;19.有理数除法的意义 已知两个因数的积与其中一个因数,求另一个因数的运算。即:20.有理数的除法法则 除以一个数等于乘这个数的倒数,; 两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零。21.有理数的乘方 求相同因数的积的运算叫做乘方。乘方的结果叫幂。 ,叫底数,叫做指数,叫做幂。 有理数幂的符号法则:正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数;0的任何非零次幂都是0.22.有理数的混合运算 一个算式里含有加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数混合运算。23.有理数的混合运算顺序 先乘方,再乘除,最后加减; 同级运算,从左到右依次进行; 如有括号先括号(小中大)第一级运算:加和减;第二级运算:乘和除;第三级运算:乘方和开方24.科学记数法 一个数写成的形式,其中是正整数,这种记数方法叫做科学记数法. 的值 = 原数的整数位数 1 25.等式与方程 等式:用等号把两个值相等的量或式子连接起来的式子. 方程:含有未知数的等式.26.方程中的项、系数、次数等概念 项:在方程中,被“+”“”号隔开的每一部分(含这部分前面的“+”“”号在内)称为一项 未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母。 项的次数:在一项中,所有未知数的指数和。 常数项:不含未知数的项。27.列方程的方法 列方程:为了求未知数,在未知数和已知数之间建立一种等量关系,就是列方程。 列方程步骤:设未知数,找等量关系,列方程。28.方程的解和解方程 使方程的左右两边相等的未知数的值叫做方程的解。 求方程的解的过程叫做解方程。29.一元一次方程的概念 概念:在一个方程中,只含有一个未知数,且未知数的次数是一次的方程。 最简形式: 标准形式:30.等式的基本性质 性质1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式; 性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。另外性质:对称性:;传递性:(等量代换)31.利用等式的基本性质解一元一次方程 解方程:求方程的解的过程。 步骤:(等式性质1),(等式性质2) 移项法则:方程中任何一项,在改变符号后,从方程的一边移到另一边,这种变形叫移项。32.列方程解应用题步骤 33.按比例分配问题 已知两个量之比为,则设这两个量分别为。34.利率问题 利息本金利率期数 本利和本金+利息本金(1+利率期数) 利息税利息税率 税后利息利息利息税利息(1税率) 税后本利和本金+税后利息35.折扣问题 利润额成本价利润率 售价成本价+利润额 新售价原售价折扣36.行程问题 路程速度时间 相遇路程速度和相遇时间 追及路程速度差追及时间37.工程问题 工作效率工作时间1(工作总量)38.不等式的概念 用不等号“<”“>”“”“”“”表示不等关系的式子,叫做不等式。39.常见的不等号及其含义 “”即“不等于”; “>”即:大于; “<”即:小于;“”即:小于或等于; “”即:大于或等于40.不等式的基本性质 不等式的基本性质1: 不等式的基本性质2: 不等式的基本性质3:41.不等式的基本性质与等式的基本性质的关系 相同点:不论是等式还是不等式,都可以在它的两边加上(或减去)同一个数(式子)。 不同点:等式在两边乘以(除以)同一个正数或同一个负数,等式成立;不等式在两边乘以(除以)同一个正数,方向不变,乘以(除以)同一个负数时,方向一定要改变。42.不等式的解的定义 能使不等式成立的未知数的值,叫做不等式的解。43.不等式的解集的定义 一个含有未知数的不等式的解的全体叫做不等式的解集。44.解不等式 求不等式解集的过程叫做解不等式。 解不等式的依据:不等式的三条性质,特别是不等式的性质3,注意不等号方向的改变。45.如何用数轴表示不等式的解集 一是确定“界点”:解集包含“界点”则用实心圆点;反之,空心圆圈。 二是确定“方向”:大于向右画,小于向左画。46.一元一次不等式组的概念 由几个含有同一个未知数的一次不等式组成的不等式组。47.一元一次不等式组的解集的概念 一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集。 解集的公共部分通常用“数轴”来确定。 解集规律:大大取大;小小取小;大小小大中间找;大大小小是无解。48.不等式组的解法 求出不等式组中各个不等式的解集;在数轴上表示各个不等式的解集;确定各个不等式解集的公共部分即这个不等式组的解集。49.一元一次不等式组的应用 与列方程解应用题类似,列不等式(组)解应用题,求出的通常是一个量的取值范围。50.二元一次方程 含有两个未知数的一次方程叫做二元一次方程。51.二元一次方程的解 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值。记作:. 二元一次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做。52.二元一次方程组 方程组中含有两个未知数,且未知数的项的次数都是一次,这样的方程组叫做二元一次方程组。 标准形式:(其中中至少有一个不为0,中至少有一个不为0)53.二元一次方程组的解 在二元一次方程组,使每个方程都适合的解,叫做二元一次方程组的解。 检验一组数是否为二元一次方程组的解的方法:将这组数值分别代入方程组中每个方程,满足所有方程时,这组数值是此方程组的解,否则不是。54.用代入消元法解二元一次方程组 从方程组中选一个系数较简单的方程,将这个方程中的某个未知数且另一个未知数的式子表示;将得到的式子代入另一个方程中,从而消去一个未知数,得到一元一次方程;解这个一元一次方程,求出一个未知数的值;求出另一个未知数的值。55.用加减消元法解二元一次方程组 把两个方程的两边分别加减消去一个未知数的方法,叫做加减消元法。 步骤:确定要消去的元,并使该元的系数相等或者互为相反数;把两个方程的两边分别相加或相减,消去一个元,得到一个一元一次方程; 解这个一元一次方程,求出一元的值;求出另一元的值。