欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    控制系统的数学模型[].doc

    • 资源ID:4530133       资源大小:361.72KB        全文页数:22页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    控制系统的数学模型[].doc

    ,第二章 控制系统的数学模型2-1 什么是系统的数学模型?大致可以分为哪些类型?答 定量地表达系统各变量之间关系的表达式,称工矿企业 数学模型。从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空间模型;等等。2-2 系统数学模型的获取有哪几种方法?答 获取系统数学模型的方法主要有机理分析法和实验测试法。机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些?答 主要步骤有:根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得出无因次的、能够描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段线性化处理或直接导出非线性微分方程式)。2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。答 对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述:式中y 为输出变量, x为输入变量, 表示y(t) 的n 阶导数, 表示x(t) 的 m阶导数。对于一般实际的物理系统, 。假定初始条件为零,对上式的等号两边进行拉氏变换,得式中Y(s)是y(t) 的拉氏变换, X(s)是x(t) 的拉氏变换,于是可得传递函数:上式就是传递函数的一般形式。由此可见,传递函数一般可以表示为两个 的多项式之比,而且分母 多项式的阶次总是大于或等于分子 多项式的阶次。2-5 试分别写出下述典型环节的时域和复域的输入输出模型:放大环节、一阶惯性环节、积分环节、二阶振荡环节、超前-滞后环节、微分环节、纯滞后环节、PID环节。答 环节的输入输出模型可以用微分方程和传递函数来表示。前者是它的时域形式,后者是它的复域形式。下面列表2-1说明各典型环节的输入输出模型(以y(t) 表示输出, x(t)表示输入)。表2-1 典型环节的输入输出模型2-6 什么是控制系统的方块图?如何利用方块图来进行控制系统的建模?答 方块图是控制系统中各个环节(元件)的功能和信号流向的图解表示。根据各环节的信号流向,用带有箭头的信号线依次将各函数方块连接起来便可以得到系统的方块图。利用方块图来进行控制系统建模的主要步骤如下:绘制控制系统控制流程图。根据控制系统功能,将控制系统划分为若干个环节,例如被控对象、控制器、测量变送环节、执行机构(控制阀)等等。列写各环节的微分方程或传递函数,即分别对各个环节建模,并将建模结果(传递函数)填入各相应的方块中。根据控制系统的信号走向(各输入输出通道)关系将各方块用信号线连接起来,便得到控制系统的方块图。根据控制系统的类型和功能,确定控制系统的输入输出变量。利用方块图的简化规则来求出等效传递函数,或借助于信号流图中的梅逊(Mason)增益公式来求出信号流图的总增益,于是便可以得到控制系统的输入输出数学模型。2-7 在方块图中,方块之间的基本连接形式有哪几种?从这几种基本连接形式出了,可归纳出哪些方块图的基本运算法则?答 方块图的基本连接形式有串联、并联和反馈三种,下面分别介绍它们的连接形式与相应的基本运算法则。串联 图2-1表示三个环节串联。图2-1 方块的串联若干个环节串联时,总的传递函数等于各方块传递函数的乘积。相应于图2-1,则有:并联 图2-2表示三个环节关联。若干个环节并联时,总的传递函数等于各方块传递函数之代数和。相应于图2-2,则有: 图2-2 方块的并联 图2-3 负反馈连接 图2-4 正反馈连接反馈 图2-3表示负反馈连接,图2-4表示正反馈连接。负反馈连接时,其闭环传递函数 为:式中G(s)称为前向通道传递函数,H(s)称为反馈通道传递函数, G(s)H(s)称为开环传递函数。当反馈通道传递函数H(s)=1时,称为单位反馈系统,此时有:正反馈连接时,如图2-4所示,则有:2-8 方块图的等效变换有哪些基本运算规则?答 系统的方块图有时不一定只是环节串联、并联和反馈三种基本连接的简单组合,而可能具有较复杂的连接方式,这时可以通过方块图的等效变换,将方块图逐步简化为上述三种基本连接关系,然后再运用其相应的传递函数求得整个系统的传递函数,从而建立系统的复域模型。方块图等效变换的基本运算规则列表2-2如下。表2-2 方块图等效变换的基本运算规则2-9 试说明信号流图的基本构成,并回答信号流图的基本运算规则有哪些?答 信号流图是类似于方块图的又一种表示变量之间关系的图示建模法。在信号流图中,有以下一些基本构成及相应的术语。节点 用来表示变量的点。此变量等于所有进入该节点的信号代数和,从节点流出的信号值都等于这个变量值。支路 连接两节点间的有向线段。输入节点或源点 只有输出支路的节点称为输入节点或源点,它对应于输入变量。在画信号流图时,一般将其放在左面。输出节点或阱点 只有输入支路的节点称为输出节点或阱点,它对应于输入变量。在画信号流图时,一般将其放在信号流图的最右面。混合节点 既具有输入支路又具有输出支路的节点称为混合节点。传输 两个节点间的增益称为传输。在信号流图中,输入节点与输出节点之间的传输称为信号流图的总传输。通路 沿支路箭头方向而穿过各相连支路的途径称为通路。如果通路与任一节点相交不多于一次的称为开通路;如果通路又回到了起点,并且与其他节点相交不多于一次,就称为闭通路或回路;如果从输入节点到输出节点的通路上,通过任何节点不多于一次,则该通路称为前向通路。不接触回路 如果一个(或一些)回路与另一个(或另一些)回路,它们没有任何的公共节点,就称它们为不接触回路。信号流图的基本连接形式及其运算规则如表2-3所示。表2-3 信号流图的基本运算规则2-10 试简述梅逊公式及其应用。答 梅逊增益公式为:式中 p-信号流图的输入节点与输出节点之间的总增益;-第k条前向通道的总增益;-第k条前向通道特征式的余因子,即与第k条前向通道不相接触的回路的信号流图的特征式;-信号流图的特征式,可写为:其中 -所有不同回路的增益之和;-每两个互不接触回路增益乘积之和;-第三个互不接触回路增益乘积之和。在建立复杂系统的数学模型时,可以通过变量置换、消去中间变量的方法来建立系统的输入-输出模型,亦可以通过方块图的等效变换来建立系统的复域数学模型。但是,借助于信号流图,特别是梅逊公式,可以更加方便地求出信号流图的总传输,从而得到系统的等交往传递函数或输入-输出模型。在运用梅逊公式时应注意,梅逊公式只能用于输入节点和输出节点之间,而不适用于任意两个混合节点之间。2-11 试简述数学模型各种表达式之间的对应关系。答 线性定常系统的数学模型主要有微分方程、传递函数和状态方程三种形式,这三种形式之间存在着内在的联系,相互之间在一定条件下可以转化,下面简述微分方程与传递函数之间转化的方法。微分方程与传递函数之间的转化是通过位氏变换与拉氏反变换来实现的。例已知微分方程为:在初始条件为0时,对上式两端取拉氏变换,则有:所以,相应的传递函数模型为:显然,如果已知系统的传递函数,只要通过拉氏反变换,就可以得到描述系统输入输出之间关系的微分方程式。2-12 试分析几种简单系统(对象)的数学模型,以说明它们之间的相似性。水力系统; 电系统;机械系统; 传热系统;气动阻容组件; 溶液制备系统。解 图2-9表示一个水槽,假定水槽的截面积为A ,输出阀的线性阻力系数为R ,则根据物料平衡有:式中V 表示水槽内水的蓄存量, 。另外,经过线性化后 与h 成线性关系,即,将 v与 代入原始方程并整理后有:令T=RA,K=R,则有: 其相应的传递函数为: 图2-9 水槽 图2-10 RC电路 图2-11 弹簧阻尼器系统图2-10是一 电路,根据基本电路定律有:两式联立,可得: 令T=RC ,则上式可写为:其相应的传递函数为: 图2-11所示这一弹簧阻尼器系统。在弹簧的上端有一位多 ,其下端就会有一位移 。由于弹簧所受的力与变形成正比,故有:F=k(x-y)式中F为力, 为弹簧的刚度。对于阻尼器来说,假设其产生的摩擦力与运动速度成正比,有:式中 为阻尼器的粘性摩擦系数。由于作用在阻尼器上的力与作用在弹簧上的力是相等的,所以有:可写成: 其相应的传递函数为如果令,则:图2-12所示为一水银温度计。为了建立温度计的测量值与被测温度之间的数学模型,我们忽略温度计玻璃本身的热容,只考虑温度计内水银的热容。水银具有的热量Q为:Q=McT式中 M水银的重量; c水银的比热容。单位时间由周围环境(温度为 )传给水银温度计的热量应该等水银内蓄存热量的变化率,因此可写成下列式子:式中 a水银温度计的等效导热系数;F水银温度计的外表面积。上述方程式可改写为:如令 ,则有: 其相应有传递函数G(s)为: 图2-12 水银温度计图2-13所示为一气动阻容组件,由一个气阻R与一个气容C组成。当输入压力 增加时,气体将通过气阻慢慢进入气室,使气室内的压力也逐渐增加,直至为止。当气压变化不大,气流气量不大时,通过气阻的气流量将与气阻两端的压差成正比,即: 式中 R气阻值; 图2-13 气动阻容组件 G通过气阻的气体质量流由于气体进入气室,将使气室中的气体密度增加,根据物料平衡,单位时间进入气容的气体量应该等于气室中气体蓄存量的变化率,即:(2-2)式中 V气室体积; P气室内气体密度。因为气体压力不高,气室中的气体可近似看做理想气体,故符合理想气体状态方程,即:(2-3)式中 n气室中气体分子的摩尔数;通过气体常数;气室中气体的绝对温度;气室中气体的绝对压力。气室中气体密度等于单位体积中的气体质量,即:式中 M气室中气体的平均分子量。将式(2-3)代入上式并求导得:(2-4)将式(2-4)和式(2-1)同时代入式(2-2),可得:或 令 ,则有: (2-5)式中T 时间常数。图2-14所示为一溶液制备槽。 x为单位时间加入的溶质量, q为单位时间加入的溶剂量。槽中溶液由溢流管引出,因此槽中的溶液体积为一常数 。考虑到加入的溶擀很少,故流出量等于溶剂的加入量 由于搅拌均匀,故流出液的浓度等于槽中溶液浓度c ,而流入液的浓度假设为0。根据物料平衡,单位时间进入槽中的溶质量减去单位时间流出槽的溶质量应该等于槽中溶质蓄存量的变化率,因此有: (2-6)如果流入流出量 q为一常数,且令:则有: 式中 T时间常数; K放大系数。图2-14 溶液制备槽以上通过机理推导的方法分别建立了六个系统(或对象)的数学模型。尽管这些系统的物理过程很不相同,但导得的数学模型却是惊人的相似。如果以 x表示输入的变化量,y 表示输出的变化量,则描述x,y 之间的关系的都是一阶微分方程式,即:其传递函数亦具有相同的形式,即:这是一个典型的一阶惯性环节。由于各种物理过程的相似性,所以给系统的模拟与仿真提供了方便与可能。同时,通过建立数学模型,也有得于进行系统的研究和分析。2-13 图2-16是一个有源四端网络,试建立网络的下列形式的数学模型。微分方程式;传递函数;图2-16 有源四端网络解:要建立该网络的微分方程数学模型,一般应按下列步骤进行。根据题意,确定模型输入、输出变量。本例可选 为输入变量,电阻R上的压降 作为输出变量,目的是要建立起能够描述变化时, 是如何变化的数学模型。根据基本的物理、化学规律列写原始方程式。本列中可根据电路基本规律列写下列方程:(2-12)(2-13)(2-14)消去中间变量,使方程式中只含输入变量与输出变量。本例中就要设法消去中间变量 ,使方程式中只含 与 ,消中间变量的步骤可以这样进行,先由式(2-12)、式(2-13)消去 得:(2-16)由式(2-13)求导,可得:将式(2-14)代入上式可得求导可得: (2-17)将式(2-17)代入(2-16),可得将式(2-15)代入上式并整理可得:(2-18)式(2-18)就是描述 与 关系的微分方程式。为了求得输入输出之间的传递函数,可以将式(2-18)在零初始条件下两取拉氏变换,可得:式中 分别为 的位氏变换。于是可得传递函数为:(2-19)为了避免推导微分方程式中消去中间变量的繁琐过程,可以通过画方块图的方法直接求出输入输出之间的传递函数,为此,将四个原始方程式(2-12)、式(2-13)、式(2-14)、式(2-15)分别在零初始条件下取拉氏变换,得:(2-20)(2-21)(2-22)(2-23)根据上述四个方程,可以分别画出其方块图如图2-17(a)、(b)、(c)、(d)所示。然后根据信号的传递关系将图2-17中的各方块用信号线连接起来,便成为整个网络的方块图,如图2-18 图2-17 方块图图2-18 整个网络的方块图为了求得 与 之间的传递函数,可以通过方块图等效变换,先将两个相加点的次序交换,然后求出内回路的传递函数 为:于是方块图就可以简化为图2-19所示。进一步简化方块图,可画为图2-20所示。整个网络的传递函数为: 图2-19 方块图图2-20 方块图由此可见,通过画方块图,可以比较方便地得到与式(2-19)相同的结果。由图2-18,也可以直接运用梅逊公式,得出系统的总增益。由图可见,共有两个回路,且互相接触,其增益分别为:系统只有一条前向通道,且与两个回路均接触,故有:根据梅逊公式,可得总增益:此结果也与式(2-19)相同。2-14 试求图2-25所示方块图的传递函数 。解 由于考虑的是单输入单输出系统的传递函数,所以在输入为X(s) 时,则假定F(s)=0 ;在输入为F(s) 时,则假定X(s)=0 。图2-25经适当变换后,分别如图2-26(a)、(b)、(c)、(d)、(e)、(f)所示。注意在上述变换过程中,运用了线路中的负号可在线路上前后移动,并可超过函数方块的规则。经过上述变换后,根据反馈连接传递函数的计算方法,分别由图2-26的(a)、(b)、(c)、(d)、(e)、(f)很容易写出下述传递函数: 图2-25 方块图 图2-26 方块图对于 和 ,由于此时 E(s)和Z(s) 不是输入节点,系统并没有构成闭环,故:注意此时由于方块图的单向性, 与 不是简单的倒数关系。2-15 已知系统的方块图如图2-27所示。图2-27 方块图试通过方块图的等效变换,求出 ;试画出相应的信号流图,并运用梅逊公式,求得 。解 这是一个多回路的方块图,且在 、 、 之间有相加点和分支点的交叉。为了从内回路到外回路逐步化简,首先要消除交叉连接。方法之一是将 之后的相加点前移至 之前,然后两相加点交换,将图2-27等效变换为图2-28(a)。然后对图2-28(a)中的由 、 、 组成的简单反馈系统进行化简,可得到图2-28(b)。进一步对内回路进行化简,便可得到图2-28(c)。经过简单运算和化简,最后便可得到一个简单的反馈控制系统,如图2-28(d)所示。图2-28 方块图由图2-28(d)便可计算得:(2-43)方法之二是将 前的相加点后移至 之后,然后相加点交换,便可得到如图2-29所示的等效方块图,然后对内回路逐个化简,便可得到式(2-43)相同的传递函数。图2-29 等效方块图方法之三是将 之后的分支点移至 之后,然后分支点交换,便可得到如图2-30所示的等效方块图,然后对内回路逐个化简,也可得到式(2-43)所表示的传递函数。图2-30 等效方块图值得注意的是在方块图中,一条线路上的相加点与分支点的前后次序是不能任意交换的。对于图2-27所示的方块图,如将 前的相加点后移,然后与分支点交换,就会得到与图2-27不等效的方块图,如图2-31所示。图2-31 方块图贴图产2-31导得的传递函数为:该结果与式(2-43)不相同,显然是错误的。将图2-27所示的方块图画成信号流图,如图2-32所示。根据梅逊公式: 可以求得总增益p ,即为该系统的 。图2-32 信号流图该信号流图中共有三个回路,且均互相接触,其增益分别为:图中仅有一条前向通路,其增该信号流图的特征式为由于前向通道 p1与三个回路均接触,故其余因式 。因此,该信号流图的总增益为:此结果与式(2-43)的结果完全相同。2-16系统的方块图如图2-33所示。图2-33 方块图通过方块图等效变换,求出 ;画出该系统的信号流图,由梅逊公式求出系统总增益p 。解 由于该方块图中存在相加点、分支点交叉,所以首先要消除交叉连接。为此,可以将与 之间的相加点与分支点分别前移与后移,得到如图2-34所示的等效方块图。图2-34 等效方块图由该图,运用串联、并联和反馈连接的方块图传递函数运算法则,就可得到:经过逐步化简,可得 :(2-44)将图2-33所示的方块图转化为信号流图,如图2-35所示。在该信号流图中,共有五个互不接触的回路,其增益分别为:故信号流图的特征式为:信号流图中共有二条前向通道,且均与各回路有接触,因此有:根据梅逊公式,则有:上述结果结果式(2-44)完全相同。图2-35 信号流图2-17 系统的方块图如图2-36所示,试画出相应的信号流图,并运用梅逊公式求出系统的总增益。解 画出相应的信号流图如图2-37所示。值得指出的是:信号流图中节点的输出信号等于输入该节点诸信号的叠加,所以在由方块图转化为信号流图时,要注意分支点与相加点的画法。例如在图2-36中, 环节后的分支点与相加点在信号流图中不能用一个节点来表示,否则通过 反馈的信号就不只是 的输入信号,还包含了 反馈的信号。所以在图2-37的信号流图中,用了两个节点,中间用传输为1的线连了起来。但是在 环节前的相加点与分支点却可以在信号流图中用一个节点表示,说明 与 的输出信号叠加后同时作为 与 的输入信号。图2-36 方块图图2-37 信号流图在图2-37中,可以看出共有五个回路,其增益分别为其中 、 、 为两两不接触回路, 为三个不接触回路,故信号流图的特征式为前向通道共有两条,且与所有回路都有接触,故:根据梅逊公式,则总增益为:2-18 系统方块图如图2-38所示。试运用梅逊公式求出传递函数 。图2-38 系统方块图解 梅逊公式可以用于信号流图求出总增益p ,也可以直接用于方块图求出系统的传递函数。对于图2-38,可以不进行方块图的等效变换,而直接运用梅逊公式,求出传递函数 。由图可见,共有三个回路,其回路传递函数分别为:其中L1 、L2 为不接触回路,所以特征式为:系统由 R(s)到C(s) 的前向通道共有三条,其通道传递函数分别为:其中P3 与 L1不接触,故有:代入梅逊公式,则有:2-19 设描述系统的微分方程为:试求:系统的传递函数;解:将微分方程两端在零初始条件下取拉氏变换,得:于是可求得传递函数:

    注意事项

    本文(控制系统的数学模型[].doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开