医用高数第一章函数和极限第一节函数精品文稿.ppt
医用高数第一章函数和极限第一节函数第1页,本讲稿共18页一、函数的概念 1 1常量与变量常量与变量 注意注意 一个量究竟是常量还是变量一个量究竟是常量还是变量,不是绝对的不是绝对的,要根据具体要根据具体过程和条件来确定过程和条件来确定.而在过程中可取不同数值的量称为变量.在某过程中始终保持同一数值的量称为常量,例如:人的身高例如:人的身高,在研究少儿发育成长的过程中是在研究少儿发育成长的过程中是常常量量;而在研究成人的健康状况时通常是;而在研究成人的健康状况时通常是变量变量第2页,本讲稿共18页函数的概念因变量自变量是自变量的所有允许值的集合,称为函数的定义域而因变量的所有对应值的集合则称为函数的值域.定义1-1 设和是同一变化过程中的两个变量,如果对于变量 的每一允许的取值,按照一定的规律,变量 总有一个确定值与之对应,则称变量 是变量 的函数变量 称为自变量,变量 称为因变量.记为注意注意1 在实际问题中在实际问题中,定义域是由实际问题决定的定义域是由实际问题决定的.第3页,本讲稿共18页注意2 函数的两要素为:定义域与对应规律 注意注意3 3 函数的表示法有函数的表示法有:公式法、图像法和表格法公式法、图像法和表格法,这三种表这三种表述各有特点并可以相互转化述各有特点并可以相互转化 因此因此,两个函数只有当它们的两个函数只有当它们的对应规律对应规律和和定义域定义域都完全相同都完全相同时时,才认为是两个相同的函数才认为是两个相同的函数.例例1-1 在出生后在出生后 16个月期间内个月期间内,正常婴儿的体重近似满足正常婴儿的体重近似满足以下关系以下关系:公式法公式法第4页,本讲稿共18页37 例例1-2 监护仪自动记录了某患者一段时间内体温监护仪自动记录了某患者一段时间内体温T的的变化曲线变化曲线,如下图示如下图示:例例1-3 某地区统计了某年某地区统计了某年112月中当地流行性出血热的发月中当地流行性出血热的发病率病率,见下表见下表 (月份)()12345678910111216.68.3 7.1 6.5 7.0 10.0 2.5 3.5 5.7 10.0 17.1 7.0ty第5页,本讲稿共18页(5)三角函数(4)对数函数(3)指数函数(2)幂函数(1)常函数二、初等函数1.基本初等函数(6)反三角函数等.第6页,本讲稿共18页变量称为复合函数的中间变量复合函数的概念可以推广到多个函数的情形,此时复合函数是通过多个中间变量的传递而构成的 例1-4 设求 关于的复合函数2.复合函数 定义1-2 设变量 是变量 的函数,变量又是变量的函数,即 如果变量 的某些值通过变量 可以确定变量 的值,则称 是 的复合函数,记为第7页,本讲稿共18页例1-5 设试求解 解 这里,变量传递顺序是规定好了的,是的中间变量,是 的中间变量,故依次代入可得第8页,本讲稿共18页 可见,复合顺序是关键另外,要注意:若经过变量代入后,复合函数的定义域为空集,则此复合函数无意义,或者说它们不能复合例如,就不能复合因为的定义域为空集,即函数无意义.例例1-6 将下列复合函数将下列复合函数“分解分解”为简单函数为简单函数第9页,本讲稿共18页解 注意注意 简单函数简单函数是指基本初等函数或由基本初等函数是指基本初等函数或由基本初等函数经过四则运算而得到的函数经过四则运算而得到的函数.定义定义1-3 由基本初等函数经过有限次的四则运算以及函由基本初等函数经过有限次的四则运算以及函数复合所得到的仅用一个解析式表达的函数,称为数复合所得到的仅用一个解析式表达的函数,称为初等函数初等函数3.初等函数初等函数第10页,本讲稿共18页 在不同的区间上用不同的解析式子表示的函数,称为在不同的区间上用不同的解析式子表示的函数,称为分段函数分段函数例1-7三、分段函数第11页,本讲稿共18页这是一个分段函数,如图这是一个分段函数,如图 例1-8 设某药物的每天剂量为y(单位:毫克),对于16岁以上的成年人用药剂量是一常数,设为2mg.而对于16岁以下的未成年人,则每天用药剂量y 成比于年龄x,比例常数为0.125mg/岁,其函数关系为o162第12页,本讲稿共18页1-1xyo 定义为:当 时,例1-9 设当 时,则第13页,本讲稿共18页1.有界性有界性四、函数的几种简单性质有界M-Myxoy=f(x)bay无界M-Mxoba第14页,本讲稿共18页2.单调性单调性xyoabxyoba增增函函数数减减函函数数 设 、是函数 在定义区间 内的任意两点,且.若,则称在内是单调递增的;若,则称在 内是单调递减的.第15页,本讲稿共18页3.奇偶性偶函数偶函数yxox-xyxox-x奇函数奇函数 如果对于函数 定义域内的任意点 ,恒有,则称 是偶函数;如果对于函数定义域内的任意点 ,恒有,则称是奇函数.第16页,本讲稿共18页4.函数的周期性 对于函数 ,如果存在正的常数T,使得 恒成立,则称 为周期函数,满足这个等式的最小正数T,称为函数的周期.例如 都是周期函数,周期为 .第17页,本讲稿共18页主要内容.常量变量 函数的概念.基本初等函数 复合函数 分段函数 初等函数.函数的性质:有界性单调性奇偶性周期性第18页,本讲稿共18页