第七章 聚合物的结构与性能PPT讲稿.ppt
第七章 聚合物的结构与性能第1页,共89页,编辑于2022年,星期一 聚合物是由许多单个的高分子链聚集而成,因而其结构有两方面的聚合物是由许多单个的高分子链聚集而成,因而其结构有两方面的含义:(含义:(1)单个高分子链的结构;()单个高分子链的结构;(2)许多高分子链聚在一起表现出)许多高分子链聚在一起表现出来的聚集态结构。可分为以下几个层次:来的聚集态结构。可分为以下几个层次:一级结构一级结构近程结构近程结构结构单元的化学组成、连接顺序、立结构单元的化学组成、连接顺序、立体构型,以及支化、交联等体构型,以及支化、交联等二级结构二级结构远程结构远程结构高分子链的形态(构象)以及高分子链的形态(构象)以及高分子的大小(分子量)高分子的大小(分子量)链结构链结构聚集态结构聚集态结构三级结构三级结构晶态、非晶态、取向态、液晶态及织态等。晶态、非晶态、取向态、液晶态及织态等。聚聚合合物物的的结结构构第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能7.1 聚合物的结构聚合物的结构第2页,共89页,编辑于2022年,星期一 高分子的二级结构:高分子的二级结构:(1)高分子的大小(即分子量)高分子的大小(即分子量)(2)高分子链的形态(构象)高分子链的形态(构象)7.2 高分子的链结构与高分子的柔顺性高分子的链结构与高分子的柔顺性第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能 高分子链中的单键可内旋转,每个键的空间位置受高分子链中的单键可内旋转,每个键的空间位置受其键角的限制,但是离第一个键越远,其空间位置的其键角的限制,但是离第一个键越远,其空间位置的任意性越大,两者空间位置的相互关系越小,可以想任意性越大,两者空间位置的相互关系越小,可以想象从第象从第i+1个键起,其空间位置的取向与第一个键完个键起,其空间位置的取向与第一个键完全无关,因此高分子链可看作是由多个包含全无关,因此高分子链可看作是由多个包含i个键的个键的段落自由连接组成,这种段落成为段落自由连接组成,这种段落成为链段链段。ii+1I.高分子的链结构高分子的链结构第3页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能 高分子链的运动是以链段为单元的,是蠕动。高分子链的运动是以链段为单元的,是蠕动。高分子链在分子内旋转作用下可采取各种可能的形态,如取不同高分子链在分子内旋转作用下可采取各种可能的形态,如取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。的构象,如伸直链、无规线团、折叠链、螺旋链等。高分子链的构象高分子链的构象第4页,共89页,编辑于2022年,星期一 构象是由分子内构象是由分子内热运动热运动引起的物理现象,是不断改变的,具有引起的物理现象,是不断改变的,具有统计性质。因此讲统计性质。因此讲高分子链取某种构象是指的是它取这种构象的几率高分子链取某种构象是指的是它取这种构象的几率最大最大。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能II.高分子的柔顺性高分子的柔顺性 高分子链能够高分子链能够通过内旋转作用改变其构象的性能通过内旋转作用改变其构象的性能称为称为高分子链高分子链的柔顺性的柔顺性。高分子链能形成的构象数越多,柔顺性越大。高分子链能形成的构象数越多,柔顺性越大。由于由于分子内旋转分子内旋转是导致分子链柔顺性的根本原因,而高分子链是导致分子链柔顺性的根本原因,而高分子链的内旋转又主要受其分子结构的制约,因而分子链的柔顺性与其分的内旋转又主要受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。分子结构对柔顺性的影响主要表现在以下几方面:子结构密切相关。分子结构对柔顺性的影响主要表现在以下几方面:第5页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能(1)主链结构)主链结构 当主链中含当主链中含C-O,C-N,Si-O键时,柔顺性好。键时,柔顺性好。因为因为O、N原子周围的原子比原子周围的原子比C原子少原子少,内旋转的位阻小;而,内旋转的位阻小;而Si-O-Si的的键角也大于键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。柔顺性。如:如:第6页,共89页,编辑于2022年,星期一 当主链中含非共轭双键时当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻,虽然双键本身不会内旋转,但却使相邻单键的非键合原子(带单键的非键合原子(带*原子)间距增大使内旋转较容易,柔顺性好。原子)间距增大使内旋转较容易,柔顺性好。如:如:第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第7页,共89页,编辑于2022年,星期一 当主链中由共轭双键组成时当主链中由共轭双键组成时,由于共轭双键因,由于共轭双键因p p电子云重叠不能电子云重叠不能内旋转,因而柔顺性差,是刚性链。如聚乙炔、聚苯:内旋转,因而柔顺性差,是刚性链。如聚乙炔、聚苯:因此,在主链中引入不能内旋转的芳环、芳杂环等环状结构,可提因此,在主链中引入不能内旋转的芳环、芳杂环等环状结构,可提高分子链的刚性。高分子链的刚性。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第8页,共89页,编辑于2022年,星期一(2)侧基:侧基:侧基的极性侧基的极性越大,极性基团数目越多,相互作用越强,单键越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。如:内旋转越困难,分子链柔顺性越差。如:第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能 非极性侧基的体积非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;如:越大,内旋转位阻越大,柔顺性越差;如:第9页,共89页,编辑于2022年,星期一 对称性侧基对称性侧基,可使分子链间的距离增大,相互作用减弱,柔,可使分子链间的距离增大,相互作用减弱,柔顺性大。侧基对称性越高,分子链柔顺性越好。如:顺性大。侧基对称性越高,分子链柔顺性越好。如:(3)氢键)氢键 如果高分子链的分子内或分子间可以形成氢键,氢键的影响比极如果高分子链的分子内或分子间可以形成氢键,氢键的影响比极性更显著,可大大增加分子链的刚性。性更显著,可大大增加分子链的刚性。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第10页,共89页,编辑于2022年,星期一(4)链的长短)链的长短 如果分子链较短,内旋转产生的构象数小,刚性大。如果分子链较如果分子链较短,内旋转产生的构象数小,刚性大。如果分子链较长,主链所含的单键数目多,因内旋转而产生的构象数目多,柔顺性好。长,主链所含的单键数目多,因内旋转而产生的构象数目多,柔顺性好。但链长超过一定值后,分子链的构象服从统计规律,链长对柔顺但链长超过一定值后,分子链的构象服从统计规律,链长对柔顺性的影响不大。性的影响不大。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能7.3 高分子的聚集态结构高分子的聚集态结构 高分子的聚集态结构也称三级结构,或超分子结构,它是指高分子的聚集态结构也称三级结构,或超分子结构,它是指聚合物内聚合物内分子链的排列与堆砌结构分子链的排列与堆砌结构。第11页,共89页,编辑于2022年,星期一 虽然高分子的链结构对高分子材料性能有显著影响,但由于聚合物虽然高分子的链结构对高分子材料性能有显著影响,但由于聚合物是有许多高分子链聚集而成,有时即使相同链结构的同一种聚合物,在是有许多高分子链聚集而成,有时即使相同链结构的同一种聚合物,在不同加工成型条件下,也会产生不同的聚集态,所得制品的性能也会截不同加工成型条件下,也会产生不同的聚集态,所得制品的性能也会截然不同,因此然不同,因此聚合物的聚集态结构对聚合物材料性能的影响比高分子聚合物的聚集态结构对聚合物材料性能的影响比高分子链结构更直接、更重要链结构更直接、更重要。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能 研究掌握聚合物的聚集态结构与性能的关系,对选择合适的加工成型研究掌握聚合物的聚集态结构与性能的关系,对选择合适的加工成型条件、改进材料的性能,制备具有预期性能的聚合物材料具有重要意义。条件、改进材料的性能,制备具有预期性能的聚合物材料具有重要意义。聚合物的聚集态结构主要包括聚合物的聚集态结构主要包括晶态结构晶态结构、非晶态结构非晶态结构、液晶态结构液晶态结构和和取向态结构取向态结构。第12页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能7.3.1 聚合物的晶态结构聚合物的晶态结构 根据根据结晶条件结晶条件不同,又可形成多种形态的晶体:单晶、球晶、伸不同,又可形成多种形态的晶体:单晶、球晶、伸直链晶片、纤维状晶片和串晶等。直链晶片、纤维状晶片和串晶等。I.结晶形态结晶形态(1)单晶)单晶 具有一定几何外形的薄片状具有一定几何外形的薄片状晶体。一般聚合物的单晶只能从晶体。一般聚合物的单晶只能从极稀溶液极稀溶液(质量浓度小于(质量浓度小于0.01wt%)中中缓慢结晶缓慢结晶而成。而成。单晶单晶第13页,共89页,编辑于2022年,星期一(2)球晶)球晶 聚合物最常见的结晶形态,为圆球状聚合物最常见的结晶形态,为圆球状晶体,尺寸较大,一般是由结晶性聚合物晶体,尺寸较大,一般是由结晶性聚合物从从浓溶液中析出或由熔体冷却浓溶液中析出或由熔体冷却时形成的。球时形成的。球晶在正交偏光显微镜下可观察到其特有的晶在正交偏光显微镜下可观察到其特有的黑十字消光或带同心圆的黑十字消光图象。黑十字消光或带同心圆的黑十字消光图象。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能球晶的黑十字消光现象球晶的黑十字消光现象第14页,共89页,编辑于2022年,星期一(3)伸直链晶片)伸直链晶片 由完全伸展的分子链平行规整排列而成的小片状晶体,晶体中由完全伸展的分子链平行规整排列而成的小片状晶体,晶体中分子链平行于晶面方向,晶片厚度基本与伸展的分子链长度相当。分子链平行于晶面方向,晶片厚度基本与伸展的分子链长度相当。这种晶体主要形成于这种晶体主要形成于极高压力极高压力下。下。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能(4)纤维状晶和串晶)纤维状晶和串晶 纤维状晶是在纤维状晶是在流动场的作用流动场的作用下使高分子链的构象发生畸变,成为下使高分子链的构象发生畸变,成为沿流动方向平行排列的伸展状态,在适当的条件下结晶而成。分子沿流动方向平行排列的伸展状态,在适当的条件下结晶而成。分子链取向与纤维轴平行。链取向与纤维轴平行。聚合物串晶是一种类似于串珠式的多晶体。聚合物串晶是一种类似于串珠式的多晶体。第15页,共89页,编辑于2022年,星期一II.聚合物的晶态结构模型聚合物的晶态结构模型 聚合物晶态结构模型有两种:聚合物晶态结构模型有两种:缨状胶束模型缨状胶束模型:认为结晶聚:认为结晶聚合物中合物中晶区晶区与与非晶区非晶区互相穿插,互相穿插,同时存在同时存在。在晶区分子链相互平。在晶区分子链相互平行排列成规整的结构,而在非晶行排列成规整的结构,而在非晶区分子链的堆砌完全无序。该模区分子链的堆砌完全无序。该模型也称型也称两相结构模型两相结构模型。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能两相结构模型两相结构模型第16页,共89页,编辑于2022年,星期一 折叠链模型折叠链模型:聚合物晶体中,高分子链:聚合物晶体中,高分子链以折叠的形式堆砌起来的。以折叠的形式堆砌起来的。伸展的分子倾向于相互聚集在一起形成链伸展的分子倾向于相互聚集在一起形成链束,分子链规整排列的有序链束构成聚合物束,分子链规整排列的有序链束构成聚合物结晶的基本单元。这些规整的有序链束表面结晶的基本单元。这些规整的有序链束表面能大自发地折叠成带状结构,进一步堆砌成能大自发地折叠成带状结构,进一步堆砌成晶片。晶片。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能特点特点:聚合物中晶区与非晶区同时存在,:聚合物中晶区与非晶区同时存在,同一条高分子链可以是一部分结晶,一部同一条高分子链可以是一部分结晶,一部分不结晶;并且同一高分子链可以穿透不分不结晶;并且同一高分子链可以穿透不同的晶区和非晶区。同的晶区和非晶区。折叠链模型折叠链模型第17页,共89页,编辑于2022年,星期一III.聚合物结晶过程的特点聚合物结晶过程的特点 聚合物结晶是高分子链从无序转变为有序的过程,有三个特点:聚合物结晶是高分子链从无序转变为有序的过程,有三个特点:(1)结晶必须在玻璃化温度)结晶必须在玻璃化温度Tg与熔点与熔点Tm之间的温度范围内进行。之间的温度范围内进行。聚合物结晶过程与小分子化合物相似,要经历聚合物结晶过程与小分子化合物相似,要经历晶核形成晶核形成和和晶晶粒生长粒生长两过程。温度高于熔点两过程。温度高于熔点Tm,高分子处于熔融状态,晶核不易,高分子处于熔融状态,晶核不易形成;低于形成;低于Tg,高分子链运动困难,难以进行规整排列,晶核也不能生,高分子链运动困难,难以进行规整排列,晶核也不能生成,晶粒难以生长。成,晶粒难以生长。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第18页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能 结晶温度不同,结晶速度也不同,在某一温度时出现最大值,出现结晶温度不同,结晶速度也不同,在某一温度时出现最大值,出现最大结晶速度的结晶温度可由以下经验关系式估算:最大结晶速度的结晶温度可由以下经验关系式估算:Tmax=0.63 Tm+0.37 Tg-18.5(2)同一聚合物在同一结晶温度下,结晶速度随结晶过程而变化)同一聚合物在同一结晶温度下,结晶速度随结晶过程而变化。一般最初结晶速度较慢,中间有加速过程,最后结晶速度又减慢。一般最初结晶速度较慢,中间有加速过程,最后结晶速度又减慢。(3)结晶聚合物结晶不完善,没有精确的熔点,存在熔限)结晶聚合物结晶不完善,没有精确的熔点,存在熔限。熔限大小与结晶温度有关。结晶温度低,熔限宽,反之则窄。这是由于熔限大小与结晶温度有关。结晶温度低,熔限宽,反之则窄。这是由于结晶温度较低时,高分子链的流动性较差,形成的晶体不完善,且各晶体结晶温度较低时,高分子链的流动性较差,形成的晶体不完善,且各晶体的完善程度差别大,因而熔限宽。的完善程度差别大,因而熔限宽。第19页,共89页,编辑于2022年,星期一IV.聚合物结晶过程的影响因素聚合物结晶过程的影响因素(1)分子链结构)分子链结构 聚合物的结晶能力与分子链结构密切相关,凡聚合物的结晶能力与分子链结构密切相关,凡分子结构分子结构对称对称(如聚乙烯)、(如聚乙烯)、规整性好规整性好(如有规立构聚丙烯)、(如有规立构聚丙烯)、分子链相分子链相互作用强互作用强(如能产生氢键或带强极性基团,如聚酰胺等)的聚(如能产生氢键或带强极性基团,如聚酰胺等)的聚合物易结晶。合物易结晶。分子链的结构还会影响结晶速度,一般分子链结构越简单、分子链的结构还会影响结晶速度,一般分子链结构越简单、对称性越高、取代基空间位阻越小、立体规整性越好,结晶速度对称性越高、取代基空间位阻越小、立体规整性越好,结晶速度越快。越快。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第20页,共89页,编辑于2022年,星期一(2)温度)温度:温度对结晶速度的影响极大,有时温度相差甚微,但:温度对结晶速度的影响极大,有时温度相差甚微,但结晶速度常数可相差上千倍结晶速度常数可相差上千倍(3)应力)应力:应力能使分子链沿外力方向有序排列,可提高结晶速:应力能使分子链沿外力方向有序排列,可提高结晶速度。度。(4)分子量)分子量:对:对同一聚合物同一聚合物而言,分子量对结晶速度有显著影而言,分子量对结晶速度有显著影响。在相同条件下,一般分子量低结晶速度快,响。在相同条件下,一般分子量低结晶速度快,(5)杂质)杂质:杂质影响较复杂,有的可阻碍结晶的进行,有的则:杂质影响较复杂,有的可阻碍结晶的进行,有的则能加速结晶。能促进结晶的物质在结晶过程中往往起成核作用能加速结晶。能促进结晶的物质在结晶过程中往往起成核作用(晶核),称为成核剂。(晶核),称为成核剂。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第21页,共89页,编辑于2022年,星期一V.结晶对聚合物性能的影响结晶对聚合物性能的影响 结晶使高分子链规整排列,堆砌紧密,因而增强了分子链结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降,对以但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降,对以弹性、韧性为主要使用性能的材料是不利的。如结晶会使橡胶失去弹性、韧性为主要使用性能的材料是不利的。如结晶会使橡胶失去弹性,发生爆裂。弹性,发生爆裂。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第22页,共89页,编辑于2022年,星期一7.3.2 聚合物的非晶态结构聚合物的非晶态结构 非晶态结构是一个比晶态更为普遍存在的聚集形态,不仅非晶态结构是一个比晶态更为普遍存在的聚集形态,不仅有大量完全非晶态的聚合物,而且即使在晶态聚合物中也存在有大量完全非晶态的聚合物,而且即使在晶态聚合物中也存在非晶区。非晶区。非晶态结构包括玻璃态、橡胶态、粘流态(或熔融态)及结晶聚合非晶态结构包括玻璃态、橡胶态、粘流态(或熔融态)及结晶聚合物中的非晶区。物中的非晶区。由于对非晶态结构的研究比对晶态结构的研究要困难的多,因而对由于对非晶态结构的研究比对晶态结构的研究要困难的多,因而对非晶态结构的认识还较粗浅。目前主要有两种理论模型,即两相球粒非晶态结构的认识还较粗浅。目前主要有两种理论模型,即两相球粒模型和无规线团模型,两者尚存争议,无定论。模型和无规线团模型,两者尚存争议,无定论。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第23页,共89页,编辑于2022年,星期一7.3.3 聚合物的液晶态聚合物的液晶态 液晶态是晶态向液态转化的中间态,既具有晶态的有序性液晶态是晶态向液态转化的中间态,既具有晶态的有序性(导致(导致各向异性各向异性),又具有液态的连续性和流动性。),又具有液态的连续性和流动性。根据形成条件的不同分为:根据形成条件的不同分为:热致性液晶热致性液晶:受热熔融形成各向异性熔体;:受热熔融形成各向异性熔体;溶致性液晶溶致性液晶:溶于某种溶剂而形成各向异性的溶液。:溶于某种溶剂而形成各向异性的溶液。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第24页,共89页,编辑于2022年,星期一(1)高分子液晶形成条件)高分子液晶形成条件 聚合物要形成液晶,必须满足以下条件:聚合物要形成液晶,必须满足以下条件:(i)分子链具有刚性或一定刚性,并且分子的长度与宽度之比分子链具有刚性或一定刚性,并且分子的长度与宽度之比R1,即分子是棒状或接近于棒状的构象。,即分子是棒状或接近于棒状的构象。(ii)分子链上含有苯环或氢键等结构;分子链上含有苯环或氢键等结构;(iii)若形成胆甾型液晶还必须含有不对称碳原子。若形成胆甾型液晶还必须含有不对称碳原子。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第25页,共89页,编辑于2022年,星期一(2)高分子液晶的分类)高分子液晶的分类 高分子液晶有三种不同的结构类型:近晶型、向列型和胆甾型。高分子液晶有三种不同的结构类型:近晶型、向列型和胆甾型。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能近晶型近晶型(i)近晶型)近晶型:棒状分子通过垂直于分子长:棒状分子通过垂直于分子长轴方向的强相互作用,互相平行排列成层轴方向的强相互作用,互相平行排列成层状结构,分子轴垂直于层面。棒状分子只状结构,分子轴垂直于层面。棒状分子只能在层内活动。能在层内活动。第26页,共89页,编辑于2022年,星期一向列型向列型(ii)向列型)向列型:棒状分子虽然也平行排列,但长短不一,不分层:棒状分子虽然也平行排列,但长短不一,不分层次,只有一维有序性,在外力作用下发生流动时,棒状分子易次,只有一维有序性,在外力作用下发生流动时,棒状分子易沿流动方向取向,并可流动取向中互相穿越。沿流动方向取向,并可流动取向中互相穿越。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第27页,共89页,编辑于2022年,星期一(iii)胆甾型)胆甾型:棒状分子分层平行排列,:棒状分子分层平行排列,在每个单层内分子排列与向列型相似,相在每个单层内分子排列与向列型相似,相邻两层中分子长轴依次有规则地扭转一定邻两层中分子长轴依次有规则地扭转一定角度,分子长轴在旋转角度,分子长轴在旋转3600后复原。后复原。两个取向相同的分子层之间的距离称为两个取向相同的分子层之间的距离称为胆甾型液晶的胆甾型液晶的螺距螺距。胆甾型胆甾型第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第28页,共89页,编辑于2022年,星期一7.3.4 聚合物的取向态聚合物的取向态 取向取向(orientation):在外力作用下,分子链沿外力方向平行排列。:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿外力方向的择优排列。物的晶片等沿外力方向的择优排列。未取向的聚合物材料是各向同性的,即各个方向上的性能相未取向的聚合物材料是各向同性的,即各个方向上的性能相同。而取向后的聚合物材料,在取向方向上的力学性能得到加同。而取向后的聚合物材料,在取向方向上的力学性能得到加强,而与取向垂直的方向上,力学性能可能被减弱。即取向聚强,而与取向垂直的方向上,力学性能可能被减弱。即取向聚合物材料是各向异性的,即方向不同,性能不同。合物材料是各向异性的,即方向不同,性能不同。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第29页,共89页,编辑于2022年,星期一聚合物的取向一般有两种方式:聚合物的取向一般有两种方式:单轴取向单轴取向:在一个轴向上施以外力,使分子链沿一个方向:在一个轴向上施以外力,使分子链沿一个方向取向。取向。如纤维纺丝:如纤维纺丝:第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能再如薄膜的单轴拉伸再如薄膜的单轴拉伸第30页,共89页,编辑于2022年,星期一双轴取向双轴取向:一般在两个垂直方向施加外力。如薄膜双轴拉伸,使分子:一般在两个垂直方向施加外力。如薄膜双轴拉伸,使分子链取向平行薄膜平面的任意方向。在薄膜平面的各方向的性能相近,链取向平行薄膜平面的任意方向。在薄膜平面的各方向的性能相近,但薄膜平面与平面之间易剥离。但薄膜平面与平面之间易剥离。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能薄膜的双轴拉伸取向:薄膜的双轴拉伸取向:第31页,共89页,编辑于2022年,星期一7.3.5 聚合物的共混聚合物的共混 所谓所谓共混聚合物共混聚合物(polymer blend)是通过简单的工艺过程把两种是通过简单的工艺过程把两种或两种以上的均聚物或共聚物或不同分子量、不同分子量分布的同种或两种以上的均聚物或共聚物或不同分子量、不同分子量分布的同种聚合物混合而成的聚合物材料,也称聚合物混合而成的聚合物材料,也称聚合物合金聚合物合金。通过共混可以获得原单一组分没有的一些新的综合性能,并且通过共混可以获得原单一组分没有的一些新的综合性能,并且可通过混合组分的调配(调节各组分的相对含量)来获得适应所需可通过混合组分的调配(调节各组分的相对含量)来获得适应所需性能的材料。性能的材料。共混与共聚的作用相类似,共混是通过物理的方法把不同性共混与共聚的作用相类似,共混是通过物理的方法把不同性能的聚合物混合在一起;而共聚则是通过化学的方法把不同性能能的聚合物混合在一起;而共聚则是通过化学的方法把不同性能的聚合物链段连在一起。的聚合物链段连在一起。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第32页,共89页,编辑于2022年,星期一通过共混可带来多方面的好处:通过共混可带来多方面的好处:(1)改善高分子材料的机械性能;)改善高分子材料的机械性能;(2)提高耐老化性能;)提高耐老化性能;(3)改善材料的加工性能;)改善材料的加工性能;(4)有利于废弃聚合物的再利用。)有利于废弃聚合物的再利用。共混与共聚相比,工艺简单,但共混时存在相容性问题,若两种聚合物共混与共聚相比,工艺简单,但共混时存在相容性问题,若两种聚合物共混时相容性差,混合程度(相互的分散程度)很差,易出现宏观的相分共混时相容性差,混合程度(相互的分散程度)很差,易出现宏观的相分离,达不到共混的目的,无实用价值。离,达不到共混的目的,无实用价值。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能通过加入相容剂(增容剂)来提高聚合物共混的相容性。通过加入相容剂(增容剂)来提高聚合物共混的相容性。第33页,共89页,编辑于2022年,星期一7.4 聚合物的溶解特性聚合物的溶解特性 由于聚合物分子量大,具有多分散性,可有线形、支化和交联由于聚合物分子量大,具有多分散性,可有线形、支化和交联等多种分子形态,聚集态又可表现为晶态、非晶态等,因此聚合等多种分子形态,聚集态又可表现为晶态、非晶态等,因此聚合物的溶解现象比小分子化合物复杂的多,具有许多与小分子化合物的溶解现象比小分子化合物复杂的多,具有许多与小分子化合物溶解不同的特性:物溶解不同的特性:(1)聚合物的溶解是一个缓慢过程,包括两个阶段:聚合物的溶解是一个缓慢过程,包括两个阶段:(i)溶胀)溶胀:由于聚合物链与溶剂分子大小相差悬殊,溶剂分子向聚:由于聚合物链与溶剂分子大小相差悬殊,溶剂分子向聚合物渗透快,而聚合物分子向溶剂扩散慢,结果溶剂分子向聚合物分合物渗透快,而聚合物分子向溶剂扩散慢,结果溶剂分子向聚合物分子链间的空隙渗入,使之体积胀大,但整个分子链还不能做扩散运动;子链间的空隙渗入,使之体积胀大,但整个分子链还不能做扩散运动;第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第34页,共89页,编辑于2022年,星期一 (ii)溶解)溶解:随着溶剂分子的不断渗入,聚合物分子链间的空隙:随着溶剂分子的不断渗入,聚合物分子链间的空隙增大,加之渗入的溶剂分子还能是高分子链溶剂化,从而削弱了增大,加之渗入的溶剂分子还能是高分子链溶剂化,从而削弱了高分子链间的相互作用,使链段得以运动,直至脱离其他链段的高分子链间的相互作用,使链段得以运动,直至脱离其他链段的作用,转入溶解。当所有的高分子都进入溶液后,溶解过程方告作用,转入溶解。当所有的高分子都进入溶液后,溶解过程方告完成。完成。溶胀可分为溶胀可分为无限溶胀无限溶胀和和有限溶胀有限溶胀。无限溶胀无限溶胀是指聚合物能无限制地吸收溶剂分子直至形成均相的是指聚合物能无限制地吸收溶剂分子直至形成均相的溶液;溶液;有限溶胀有限溶胀是指聚合物吸收溶剂到一定程度后,如果其它条件不变,是指聚合物吸收溶剂到一定程度后,如果其它条件不变,不管与溶剂接触时间多长,溶剂吸入量不再增加,聚合物的体积也不管与溶剂接触时间多长,溶剂吸入量不再增加,聚合物的体积也不再增大,高分子链段不能挣脱其他链段的束缚,不能很好地向溶不再增大,高分子链段不能挣脱其他链段的束缚,不能很好地向溶剂扩散,体系始终保持两相状态。剂扩散,体系始终保持两相状态。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第35页,共89页,编辑于2022年,星期一 有些有限溶胀的聚合物在升温条件下,可以促进分子链的运有些有限溶胀的聚合物在升温条件下,可以促进分子链的运动使之易分离而发生溶解。升温可促进溶解,增加溶解度。动使之易分离而发生溶解。升温可促进溶解,增加溶解度。对于一些交联聚合物,由于交联的束缚(链与链之间形成化学键)对于一些交联聚合物,由于交联的束缚(链与链之间形成化学键),即使升高温度也不能使分子链挣脱化学键的束缚,因此不能溶解。,即使升高温度也不能使分子链挣脱化学键的束缚,因此不能溶解。但交联点之间的链段可发生弯曲和伸展,因此可发生溶胀。但交联点之间的链段可发生弯曲和伸展,因此可发生溶胀。(2)聚合物的溶解度与分子量有关。一般分子量越大,溶解度越小;聚合物的溶解度与分子量有关。一般分子量越大,溶解度越小;反之,溶解度越大。反之,溶解度越大。(3)非极性晶态聚合物比非晶态聚合物难溶解。非极性晶态聚合物比非晶态聚合物难溶解。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第36页,共89页,编辑于2022年,星期一 由于非极性晶态聚合物中分子链之间排列紧密,相互作用由于非极性晶态聚合物中分子链之间排列紧密,相互作用强,溶剂分子难以渗入,因此在室温条件下只能微弱溶胀;只强,溶剂分子难以渗入,因此在室温条件下只能微弱溶胀;只有升温到其熔点附近,使其晶态结构熔化为非晶态,才能溶解。有升温到其熔点附近,使其晶态结构熔化为非晶态,才能溶解。如线形聚乙烯。如线形聚乙烯。但极性较强的晶态聚合物由于可与极性溶剂之间形成氢键,但极性较强的晶态聚合物由于可与极性溶剂之间形成氢键,而氢键的生成热可破坏晶格,使溶解得以进行。而氢键的生成热可破坏晶格,使溶解得以进行。对同种聚合物而言,结晶可降低聚合物的溶解度,结晶度越对同种聚合物而言,结晶可降低聚合物的溶解度,结晶度越高,溶解越困难,溶解度越小。高,溶解越困难,溶解度越小。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第37页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能聚合物溶剂的选择聚合物溶剂的选择(1)极性相似原则:)极性相似原则:相似者相容相似者相容(2)溶度参数相近原则:)溶度参数相近原则:溶度参数是反映分子间相互作用力大小的一个参数。定义为单位溶度参数是反映分子间相互作用力大小的一个参数。定义为单位体积汽化能的平方根。用体积汽化能的平方根。用d d来表示。常见溶剂的溶度参数可查手册。来表示。常见溶剂的溶度参数可查手册。若难以找到合适的单一溶剂,可选择混合溶剂。混合溶剂若难以找到合适的单一溶剂,可选择混合溶剂。混合溶剂的溶度参数计算如下式:的溶度参数计算如下式:m=11 22 (为体积分数)为体积分数)第38页,共89页,编辑于2022年,星期一第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能(3)溶剂化原则:)溶剂化原则:即溶剂分子通过与高分子链的相互作用可把链分离而即溶剂分子通过与高分子链的相互作用可把链分离而发生溶胀,直到溶解。发生溶胀,直到溶解。溶剂化作用要求聚合物和溶剂中,一方是电子受体(亲电性),溶剂化作用要求聚合物和溶剂中,一方是电子受体(亲电性),另一方是电子给体(亲核性),两者相互作用产生溶剂化。另一方是电子给体(亲核性),两者相互作用产生溶剂化。常见的亲电性基团:常见的亲电性基团:-SO3H,-COOH,-C6H4OH,=CHCN,=CHNO2,-CHCl2,=CHCl 常见的亲核性基团:常见的亲核性基团:-CH2NH2,-C6H4NH2,-CON(CH3)2,-CONH-,-CH2COCH2-,-CH2OCOCH2-,-CH2-O-CH2-第39页,共89页,编辑于2022年,星期一7.5 聚合物的力学状态及其转变聚合物的力学状态及其转变 聚合物的物理状态从热力学和动力学不同角度可分为相态和聚合物的物理状态从热力学和动力学不同角度可分为相态和聚集态。聚集态。相态是热力学概念,由自由焓、温度、压力和体积等热力学参相态是热力学概念,由自由焓、温度、压力和体积等热力学参数决定。相态转变伴随着热力学参数的突变。相态的转变仅与热数决定。相态转变伴随着热力学参数的突变。相态的转变仅与热力学参数有关,而与过程无关,也称力学参数有关,而与过程无关,也称热力学状态热力学状态。聚集态是动力学概念,是根据物体对外场(外部作用)特别是聚集态是动力学概念,是根据物体对外场(外部作用)特别是外力场的响应特性进行划分,所以也常称为外力场的响应特性进行划分,所以也常称为力学状态力学状态。力学状态涉及。力学状态涉及松弛过程,与时间因素密切相关。松弛过程,与时间因素密切相关。聚合物在不同外力条件下所处的力学状态不同,表现出的力学性能也聚合物在不同外力条件下所处的力学状态不同,表现出的力学性能也不同。不同。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第40页,共89页,编辑于2022年,星期一7.5.1 非晶态聚合物的力学三态及其转变非晶态聚合物的力学三态及其转变 若对某一非晶态聚合物试样施加一恒定外力,观察试样在等若对某一非晶态聚合物试样施加一恒定外力,观察试样在等速升温过程中发生的形变与温度的关系,便得到该聚合物试样的速升温过程中发生的形变与温度的关系,便得到该聚合物试样的温度温度-形变曲线形变曲线(或称(或称热热-机械曲线机械曲线)。)。非晶态聚合物典型的热非晶态聚合物典型的热-机械曲线如下图,存在两个斜率突变机械曲线如下图,存在两个斜率突变区,这两个突变区把热区,这两个突变区把热-机械曲线分为三个区域,分别对应于三种机械曲线分为三个区域,分别对应于三种不同的力学状态,三种状态的性能与分子运动特征各有不同。不同的力学状态,三种状态的性能与分子运动特征各有不同。形形变变温度温度IIIIII第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第41页,共89页,编辑于2022年,星期一 在区域在区域I,温度低,链段运动被冻结,温度低,链段运动被冻结,只有侧基、链节、链长、只有侧基、链节、链长、键角等的局部运动键角等的局部运动,因此聚合物在外力作用下的形变小,具有,因此聚合物在外力作用下的形变小,具有虎虎克弹性行为:克弹性行为:形变在瞬间完成,当外力除去后,形变又立即恢形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻玻璃态璃态。玻玻璃璃态态温度温度形形变变IIIIII第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能第42页,共89页,编辑于2022年,星期一 随着温度的升高,链段运动逐渐随着温度的升高,链段运动逐渐“解冻解冻”,形变逐渐增大,当温,形变逐渐增大,当温度升高到某一程度时,度升高到某一程度时,链段运动得以充分发展链段运动得以充分发展,形变发生突变,进,形变发生突变,进入区域入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,并且当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能称除去外力后能恢复原状的性能称高弹性高弹性,相应的力学状态称,相应的力学状态称高弹态高弹态。第第 七七 章章 聚聚 合合 物物 的的 结结 构构 与与 性性 能能温度温度形形变变IIIIII玻玻璃璃态态高弹态高弹态第43页,共89页,编辑于2022年,星期一 由玻璃态向