毕业设计方案电阻点焊缺陷分析及控制(专业论文).doc
-
资源ID:4544337
资源大小:3.44MB
全文页数:35页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
毕业设计方案电阻点焊缺陷分析及控制(专业论文).doc
,重庆科技学院毕业设计(论文) 题 目 汽车车身点焊焊接缺陷控制研究 院 (系) 冶金与材料工程学院 专业班级 焊接技术及自动化2009-01 学生姓名 黄 尧 学号 2009630550 指导教师 王 刚 职称 讲 师 评阅教师 职称 2012年 6 月 8 日 注 意 事 项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它学生毕业设计(论文)原创性声明 本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 毕业设计(论文)作者(签字): 年 月 日,摘 要焊接是汽车工业中应用最广泛的装配连接方式,点焊因其技术可靠、成本低、效率高及方法简单等优势成为轿车车身装配的主要连接手段。典型轿车自车身由300500个薄板冲压件焊接而成,焊点数多达30006000个。然而在点焊焊接过程中受焊接参数变动、网压波动、工艺规范、焊接回路阻抗变化等因素的影响,容易在点焊接头中出现各种缺陷;如未熔合与未焊合、缩孔、裂纹、烧穿、喷溅和压痕过深等。焊接缺陷的存在将直接影响焊接结构的可靠性,而车身的强度在很大程度上取决于焊点质量,车身制造质量也直接影响整车的安全性和使用寿命。本文分析点焊缺陷产生的原因,并研究相应的解决办法。汽车车身生产是批量生产,如果焊件的点焊焊接缺陷到了总装流水线上装配时才被发现,需要进行补焊、补漏、校正,变形,影响流水线的作业进度,因此消除焊接缺陷,保证整车的质量有着实际的意义。关键词:电阻点焊 点焊缺陷 整车质量,目 录摘要I1 绪论21.1汽车车身装焊工艺21.1.1汽车车身焊装的常用方法21.1.2.汽车车身装焊流程21.2电阻点焊在车身生产中的应用31.3本课题研究目的及意义52 点焊原理72.1点焊的基本概念72.2点焊焊接循环分析72.3点焊的工艺参数82.4焊接参数间相互关系及选择113 汽车车身点焊工艺133.1材料点焊焊接性分析133.1.1 DC05点焊焊接性分析133.2汽车燃油箱固定件点焊焊接工艺154 点焊缺陷分析及控制174.1 DCO5电阻点焊常见缺陷及解决办法174.2点焊缺陷在生产中的全面控制225 点焊的质量检验245.1破坏性检验246 总结27参考文献28附录、一29,1 绪 论1.1汽车车身装焊工艺1.1.1汽车车身焊装的常用方法汽车车身壳体是一个复杂的结构件,它是由百余种、甚至数百种(例如轿车)薄板冲压件经焊接、铆接、机械联结及粘接等方法联结而成的。由于车身冲压件的材料大都是具有良好焊接性能的低碳钢,所以焊接是现代车身制造中应用最广泛的联结方式。表1.1列举了车身制造中常用的焊接方法。表1.1车身制造中常用的焊接方法及典型应用焊接方法典型应用实例电阻焊点焊单点焊悬挂式点焊机车身总成、车身侧围等分总成固定式点焊机小型板类零件多点焊压床式多点焊车身底盘总成C型多点焊车门、发动机盖等总成缝焊悬挂式缝焊机车身顶盖流水槽固定式缝焊机油箱总成凸焊螺母、小支架电弧焊CO2气体保护焊车身总成氩弧焊车身顶盖后两侧接缝手工电弧焊厚料零部件气焊氧.乙炔焊车身总成补焊钎焊锡钎焊水箱特种焊微弧等离子焊车身顶盖后角板激光焊车身底板1.1.2.汽车车身装焊流程车身制造中应用最多的是电阻焊,一般占整个焊接工作量的60以上,有的车身几乎全部采用电阻焊。除此之外就是二氧化碳气体保护焊,它主要用于车身骨架和车身总成的焊接中。由于车身零件大都是薄壁板件或薄壁杆件,其刚性很差,所以在装焊过程中必须使用多点定位夹紧的专用装焊夹具,以保证各零件或合件在焊接处的贴合和相互位置,特别是门窗等孔洞的尺寸等。这也是车身装焊工艺的特点之一。为便于制造,车身设计时,通常将车身划分为若干个分总成,各分总成又划分为若干个合件,合件由若干个零件组成。车身装焊的顺序则是上述过程的逆过程,即先将若干个零件装焊成合件,再将若干个合件和零件装焊成分总成,最后将分总成和合件、零件装焊成车身总成。轿车大致按图1.1制造程序装焊的。图1.1轿车白车车身焊装程序图1.2电阻点焊在车身生产中的应用电阻点焊是一种被广泛应用的生产工艺,尤其被广泛应用于现代制造业及其它一些高科技产业与领域,如汽车制造、飞机制造及航空航天领域,每年约占世界总焊接量的三分之一。电阻点焊相对其它焊接方法,点焊的主要优点是高效、质量可靠、成本低、易操作、易实现焊接自动化,适用于大批量生产。点焊已经成为汽车制造工业中的主要连接工艺方法,在汽车制造工业中发挥着不可替代的重要作用。首先应用于车身焊装,汽车车身焊装包括车身底板、侧围、车架、车顶、车门、车身总成等部分(如图1.2图1.10所示。),在它们的焊接过程中大量采用电阻点焊工艺。 图1.2前围上部总成 图 1.3地板总成 图1.4侧围总成 图1.5后围零件 图1.6顶盖总成 图1.7行李舱搁板 图1.8车门总成 图1.9发动机盖 图1.10行李舱盖总成富康轿车白车身,属于无独立车架的承载式全焊接结构,是由20多个大总成、数百种薄板冲压件经焊接而成的复杂结构件;其焊接方法有电阻点焊、混合气体保护焊(MAG焊)、螺柱焊等,而主要采用电阻点焊模式,白车身上电阻焊焊点有3600多个;上海大众“帕萨特”白车身上的焊点数达到5892点,三箱POLO车的整个车身共有3725个焊点,几乎遍及每一个总成,因此保证点焊质量成为汽车车身装配质量、控制车体误差的关键。其次,点焊还应用于汽车零部件的生产,包括横梁总成车挡托架的装配点焊、燃油箱上固定件的点焊、滤清器点焊、液力变矩器平衡片点焊、汽车制动蹄点焊等。1.3本课题研究目的及意义虽然新的焊接方法的发展在汽车工业中逐步形成了规模,部分的取代了传统的电阻焊方法,用于汽车车身和零部件的装配焊接,但是电阻点焊在汽车制造中的主导地位在今后的一段时期内不会改变,电阻点焊在汽车生产中的应用前景仍旧是非常广阔的。中国的汽车工业已进入历史上少有的高速发展期,2011年汽车产销量在1840万辆以上。点焊的完整性决定了汽车的整体结构刚度和完整性,故点焊的焊接质量直接关系到车身及汽车的质量。随着社会的发展,生活水平的提高,汽车向中高档方向发展,对焊装设备和焊接质量的要求都越来越高,而保证点焊的质量是提高汽车安全性能的方法之一。在汽车生产全球化程度越来越高,我国的汽车工业面临巨大的挑战,提高产品质量是增强竞争力的有效途径,这同样需要保证汽车中几千个点焊焊点的连接质量。如美国的汽车工业,仅三大汽车公司就有64条生产线,年产汽车1300万台,电阻点焊控制器的改善和提高将使车身结构加强,并且提高美国汽车制造企业的竞争力。通常在汽车工业中,为了保证质量,每台车约有多于设计数量的30的焊点,掘推算:如果减少焊点数量10,每年可节约500万美元左右。1996年,美国国家标准和技术研究所宣布用136亿美元进行的电阻点焊这个先进技术项目(ATP)的研究。美国国家标准和技术研究所专家认为,改进美国现有的电阻焊设备和控制装置,预计在相关产业可以获得500亿美元的经济效益。这个项目得到了汽车行业人士的重视,许多研究机构和企业,如美国智能电阻焊协会、克来斯勒公司、福特汽车公司、通用汽车公司以及密西根大学、爱迪生焊接研究所、工业技术研究所等给予这个项目很大的支持。一方面,由于点焊过程相当复杂,影响因素多、因素之间相互作用,加之焊接过程中熔核的不可见性及焊接过程瞬时性,给点焊质量检测与控制带来了很大困难;另一方面,为了使不合格接头的比例保持在规定的合理范围内,工厂里通常要定期进行焊后破坏性实验。但是,破坏性实验成本极高,而且定期的抽样实验并不能保证每一辆车身焊接接头的合格率都保持在规定的范围内;同时,焊后实验具有严重的滞后性,由于轿车生产的大批量流水作业特点,待有焊接质量问题发现时,大量具有焊接质量问题的车身己经到了总装甚至到了客户手中。由此可见,电阻点焊过程及焊点质量的稳定性一直是电阻点焊质量控制研究中的关键问题,历来被认为是电阻焊质量控制的研究重点,并引起了工业界和研究机构的高度重视因此,为了提高焊接质量,需要对熔核形成过程的有关电参数进行控制,以形成合格焊点,或者在线监测和控制与熔核形成有关的物理参量,以实时监测并控制焊接过程,实现在线判定和控制焊点质量,这对于保证焊点质量的稳定性提高点焊合格率,达到降低成本和提高生产效率具有十分重要的实际意义。随着新材料和新技术的不断出现以及应用领域的扩展,对点焊质量的要求也越来越高。根据实际工作的需要,克服点焊的缺陷和不足成为当前点焊技术发展中的一个重要任务。这些缺陷存在与否或多少直接关系到点焊的质量,而点焊质量直接关系到产品的质量。况且利用点焊技术的生产的产品大多数是科技含量高、价格昂贵或作用至关重要的产品或零部件。汽车车身的点焊的连接质量决定了汽车的整体结构刚度和完整性,同时保证汽车的行驶安全。所以对于汽车车身点焊焊接缺陷控制的研究,保证点焊质量具有重要的实际意义。,2 点焊原理2.1点焊的基本概念点焊属于电阻焊的一种,它是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触表面及邻近区域产生的电阻将其加热到熔化或塑性状态,使之形成金属结合的一种焊接方法。电阻点焊的特点:(1)焊件间靠尺寸不大的熔核进行连接,熔核均匀、对称分布在两焊件的结合面上。(2)焊接电流大、焊接时间短、焊接过程中加压力。(3)点焊时热、机械(力)联合作用的焊接过程。2.2点焊焊接循环分析焊接循环(weldingcycle),在电阻焊中是指完成一个焊点所包括的全部程序。图是一个较完整的复杂点焊焊接循环,由加压,休止等十个程序段组成,I、F、t中各参数均可独立调节,它可满足常用(含焊接性较差的)金属材料的点焊工艺要求。当将I、F、t中某些参数设为零时,该焊接循环将会被简化以适应某些特定材料的点焊要求。当其中I1、I3、Fpr、Ffo、t2、t3、t4、t6、t7、t8均为零时,就得到由四个程序段组成的基本点焊焊接循环,该循环是目前应用最广的点焊循环,即所谓“加压焊接维持休止”的四程序段点焊或电极压力不变的单脉冲点焊。图2.1复杂点焊焊接循环示意图1.加压程序 2.热量递增程序 3.加热1程序 4.冷却1程序 5.加热2程序 6.冷却2程序7.加热3程序 8.热量递减程序 9.维持程序 10.休止程序.预压压力 .锻压力 .施加压力时刻(从断电时刻算起).电极压力 .点焊周期 .施加锻压力时刻(从通电时刻算起)2.3点焊的工艺参数点焊工艺的基本参数有焊接电流、焊接时间、电极压力、和电极工作端面尺寸。(1) 焊接电流I焊接时流经焊接回路的电流称为焊接电流,一般在数万安培(A)以内。焊接电流是最主要的点焊参数。调节焊接电流对接头力学性能的影响如图2.2所示。图2.2接头抗剪载荷与焊接电流的一般关系1.板厚1.6mm以上 2.板厚1.6以下1)AB段曲线呈陡峭段。由于焊接电流小使热源强度不足而不能形成熔核或熔核尺寸甚小,因此焊点拉剪载荷较低且很不稳定。2)BC段曲线平稳上升。随着焊接电流的增加,内部热源发热量急剧增大(QI2),熔核尺寸稳定增大,因而焊点拉剪载荷不断提高;临近C点区域,由于板间翘离限制了熔核直径的扩大和温度场进入准稳态,因而焊点拉剪载荷变化不大。3)CD段由于电流过大使加热过于强烈,引起金属过热、喷溅、压痕过深等缺陷,接头性能反而降低。图2.2还表明,焊件越厚BC段越陡峭,即焊接电流的变化对焊点拉剪载荷的影响越敏感。从工艺上考虑,焊接电流波形陡升与陡降时,会因加热、冷却速度过快引起飞溅或在熔核内部产生收缩性缺陷;而具有缓升与缓降的电流脉冲和波形,有预热和缓冷的作用,可有效防止飞溅与内部收缩性缺陷。(2) 焊接时间t自焊接电流接通到停止的持续时间,称焊接通电时间,简称焊接时间。点焊时t一般在数十周波(1周波0.02s)以内。焊接时间对接头力学性能的影响与焊接电流相似(图2.3)。但应注意两点:1) C点以后曲线并不立即下降,这是因为尽管熔核尺寸已达饱和,但塑性环还可有一定扩大,再加之热源加热速率较和缓,因而一般不会产生喷溅。图2.3接头抗剪载荷与焊接时间的关系1-板厚1mm 2-板厚.5mm2) 焊接时间对接头塑性指标影响较大,尤其对承受动载或有脆性倾向的材料(DC05的可淬硬倾向小),较长的焊接时间也可以获得良好的点焊接头,但是点焊的生产效率。所以,在实际生产中通过减少焊接时间来提高生产效率。(3) 电极压力Fw 点焊时通过电极施加在焊件上的压力一般要数千牛(N)。图2.4表明,电极压力过大或过小都会使焊点承载能力降低和分散性变大,尤其对拉伸载荷影响更甚。当电极压力过小时,由于焊接区金属的塑性变形范围及变形程度不足,造成因电流密度过大而引起加热速度增大而塑性环又来不及扩展,从而产生严重喷溅。这不仅使熔核形状和尺寸发生变化,而且污染环境和不安全,这是绝对不允许的。电极压力过大时将使焊接区接触面积增大,总电阻和电流密度均减小,焊接散热增加,因此熔核尺寸下降,严重时会出现未焊透缺陷。一般认为,在增大电极压力的同时,适当加大焊接电流或焊接时间,以维持焊接区加热程度不变。同时,由于压力增大,可消除焊件装配间隙、刚性不均匀等因素引起的焊接区所受压力波动对焊点强度的不良影响。此时,不仅使焊点强度维持不变,稳定性亦可大为提高。图2.4接头承载能力与电极压力的关系(低碳钢=1mm)-电极压力 -抗剪载荷 -抗伸载荷(4)电极头端面尺寸D或R电极头是指点焊时与焊件表面相接触时的电极端头部分。其中D为锥台形电极头端面直径,R为球面形电极头球面半径,h为端面与水冷端距离(图2.5)。电极头端面尺寸增大时,由于接触面积增大、电流密度减小、散热效果增强,均使焊接区加热程度减弱,因而熔核尺寸减小,使焊点承载能力降低(图2.6)。应该指出,在点焊过程中,由于电极工作条件恶劣,电极头产生压溃变形和粘损是不可避免的,因此要规定:锥台形电极头端面尺寸的增大D<15D,同时对由于不断锉修电极头而带来的与水冷端距离h的减小也要给予控制。低碳钢点焊h3mm。 图2.5常用电极结构图2.6接头抗剪载荷与电极头端面直径D关系(低碳钢=1mm;用图2.7接近C规范焊接)2.4焊接参数间相互关系及选择点焊时,各焊接参数的影响是相互制约的。当电极材料、端面形状和尺寸选定以后,焊接参数的选择主要是考虑焊接电流、焊接时间及电极压力,这是形成点焊接头的三大要素,其相互配合可有两种方式。(1)焊接电流和焊接时间的适当配合这种配合是以反映焊接区加热速度快慢为主要特征。当采用大焊接电流、短焊接时间参数时,称硬规范;而采用小焊接电流、适当长焊接时间参数时,称软规范。软规范的特点:加热平稳,焊接质量对焊接参数波动的敏感性低,焊点强度稳定;温度场分布平缓,塑性区宽,在压力作用下易变形,可减少熔核内喷溅、缩孔和裂纹倾向;对有淬硬倾向的材料,软规范可减小接头冷裂纹倾向;所用设备装机容量小,控制精度不高,因而较便宜。但是,软规范易造成焊点压痕深,接头变形大,表面质量差,电极磨损快,生产效率低,能量损耗较大。,应该注意,调节I、t使之配合成不同的硬、软规范时,必须相应改变电极压力Fw,以适应不同加热速度及满足不同塑性变形能力的要求。硬规范时所用电极压力显著大于软规范焊接时的电极压力。(2)焊接电流和电极压力的适当配合这种配合是以焊接过程中不产生喷溅为主要原则,这是目前国外几种常用电阻点焊规范(RWMA、MIL Spec、BWRA等)的制定依据。根据这一原则制定的I.Fw关系曲线,称喷溅临界曲线(图25)。曲线左半区为无喷溅区,这里Fw大而I小,但焊接压力选择过大会造成固相焊接(塑性环)范围过宽,导致焊接质量不稳定;曲线右半区为喷溅区,因为电极压力不足,加热速度过快而引起喷溅,使接头质量严重下降和不能安全生产。当将低碳钢点焊规范选在喷溅临界曲线附近(无喷溅区内)时,可获得最大熔核和最高拉伸载荷。同时,由于降低了焊机机械功率,也提高了经济效果。当然,在实际生产中应用这一原则时,应将电网电压、加压系统等的允许波动带来的影响考虑在内。以上讨论的两种情况,通过低碳钢点焊焊接参数表、列线图、曲线图和规范尺等形式表现出来,但在实际使用这些资料时均需进行试验修正。图2.7焊接电流与电极压力的关系(A、B、C为RWMA焊接规范中的三类),3 汽车车身点焊工艺3.1材料点焊焊接性分析判断金属材料点焊焊接性的主要标志:材料的导电性和导热性,即电阻率小而导热率大的金属材料,其焊接性较差;材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)塑性温度区间窄的材料(如铝合金),其焊接性较差;材料对热循环的敏感性,即生成与热循环作用有关缺陷(裂纹脆硬组织等)的材料(65Mn),其焊接性差;熔点高线膨胀系数大硬度高等金属材料,其焊接性一般较差,当然,评定某一金属材料点焊焊接性时应综合全面考虑以上诸因素。3.1.1 DC05点焊焊接性分析DC05含碳量为0.12,为低碳钢,其点焊焊接性良好,采用用工频交流点焊机,简单焊接循环,无需特别的焊接工艺措施,即可或得满意的焊接质量。DC05冷轧钢板由于其具有优良的冲压性能 ,已经成为汽车制造用钢板的热门材料,由于电阻点焊具有生产效率高和易于实现自动化等优点,已经在汽车工业中被广泛采用,并将继续成为汽车工业中钢板的主要焊接方法。特深冲用DC05为材料的化学成分及力学性能如表3.1和表3.2所示。焊接性可通过对照Q235A进行对比分析。Q235A的化学成分如表3.3所示。 表3.1 DC05 冷轧钢板的化学成分 成分CSiMnPSAl含量0.120.421.770.0180.0060.049表3.2 DC05冷轧钢板的力学性能项目屈服强度/(N/mm)抗拉强度/(N/mm)端面延伸率/指标14531140表3.3 Q235A的化学成分成分CSiMnPS含量0.220.351.40.0450.051.DC05的导电性和导热性通过查阅资料得到DC05电阻率和热导率分别为:20时的电阻率/(10(-6)m)O.1、46.4W/(m2K)DC05电阻率和热导率都小于Q235。2.DC05的高温塑性及塑性温度范围通过对比DC05与Q235的化学成分,DC05的Mn/s大于Q235的Mn/s,得DC05的高温塑性较好,且塑性温度区间大于Q235。3.DC05对热循环的敏感性因为DC05含碳量低于Q235,S、P含量都低,得到DC05的对焊接热循环的敏感性较低,在冷却的时候不易得到脆硬组织,就有良好的焊接性。4.DC05的熔点、线膨胀系数、硬度通过查阅资料DC05的熔点1400-1500 线膨胀系数小于Q235 且硬度小于Q235,起点焊性能优于Q235。根据上述数据分析得到,DC05冷轧钢板为低碳钢,DC05的电阻率适中,塑性温度区宽,易于获得所需的塑性变形而不必使用很大的电极压力,具有良好的点焊工艺性能,在板厚小于6mm时通常采用普通的工频交流焊机,焊接电流、电极压力和通电时间都具有较大的调节范围。在焊接工艺参数选取的时候可以参照表3.4推荐的焊接工艺参数。点焊技术要点:(1)焊前冷轧板表面可不必清理,热轧板应去掉氧化皮、锈。(2)建议采用硬规范点焊,CE大者会产生一定的淬硬现象,但不一定不影响使用。(3)焊厚板3mm时建议选用带锻压的压力曲线,带预热电流脉冲或断续通电的多脉冲点焊方式,选用三相低频焊机焊接等。(4)低碳钢属于铁磁性材料,当焊件尺寸大时应考虑分段调整焊接参数,以弥补因焊件伸入焊接回路过多而引起的焊接电流减弱。(5)焊接参数参见表3.4。表3.4的点焊常用焊接参数板厚电极型式和电极直径硬规范软规范最小搭接宽度最小焊点间距焊点直径电极间 压力焊接时间焊接电流电极间 压力焊接时间焊接电流mmD (mm)d (mm)NCyclesANCyclesAmmmmmm0.512.53.513506610060010370011103.30.812.54.519008810010001545001113411652300109300120020570012194.81.5166.235001411500170035680016265.7216748001813500230045820018326.82.516861002115000300070870019387.8(1)材料表面应没有锈、氧化物、油漆、油脂、油。(2)电极材料应根据板材状况选用(3)对于三层板焊接,最小间距应增加30%3.2汽车燃油箱固定件点焊焊接工艺汽车的燃油箱固定件是固定燃油箱的重要部件,保证车辆在行驶过程中油箱不会掉落,保证车辆的安全行驶。燃油箱固定件是DC05经过冲在成型过后再点焊在一起。燃油箱固定件的实际规格由8个焊点组成。燃油箱固定件由固定件3mm60mm75 mm和固定座板2mml74mml05mm点焊而成。如图3.1所示。图3.1燃油箱固定件示意图(1)焊接接头形式点焊接头的强度取决于焊点的几何尺寸及其内外质量。焊点的几何尺寸见图1,一般要求熔核直径随板厚增加而增大。通常用下式表示: (3.1)式中:d为熔核直径,mm;为焊件最薄板厚,mmh=(0.20.8)( ) (3.2)式中:h熔核高度,mm;为焊件表面压痕深度,mm;一般取(01015),mm。熔核在单板上的熔化高度h对板厚度的百分比为熔透率A,即A=h/l00 (3.3)d.熔核直径,mm一压痕深度,mm;e一焊点距离,mm;h一熔核高度,mm;一钢板厚度,mm图3.2 点焊的几何尺寸示意图对于这次工艺试验因工件作剪切力试验的局限性采用单点试样和燃油固定件成仿真模拟试验两种方法制取试样,各试样的焊点尺寸见表3.3。其中熔核高度按中间值取04。表3.3各试样焊点距离材料厚度/mm熔核直径/mm压痕深度/mm焊点距离/mm熔核高度/mm焊透率/1.0+3.050.1080.41.5+2.060.15120.61.5+3.060.15160.630-702.0+2.570.20200.82.0+3.070.20240.8(2)确定工艺参数根据选择工艺参数的具体步骤:1)定电极的端面形状和尺寸d=2+3。2)初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样。3)经检验熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术要求所规定的要求为止。厚度比小于3:1时,工艺参数可按照厚件进行选择,并稍增大焊接电流或者焊接时间;当两工件的厚度比大于3:1时,除按上条件处理外,还应:a 在厚板的一侧采用大的电极直径;b 在薄板的一侧采用导电性稍差的电极材料;此外,在试样选择工艺、参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。参照相同板厚的试焊参数拟确定本次工艺试样的各参数见表3.4。,表3.4各试样点焊参数,材料厚度/mm电极直径/mm焊接时间/周波电极压力/KN焊接电流/KA1.0+3.0782.810.01.5+2.07113.611.81.5+3.07144.413.42.0+2.57155.114.82.0+3.07205.916.13.点焊机的操作流程:1)点焊工作前检查焊机的润滑状态是否良好;2)打开冷却水阀门,并检查水路是否畅通和密封,任何冷却水路没有通水都不允许焊接;3)打开气阀,并调好适当压力。接通电源,空动作几次确认无误后方可开始工作。,4 点焊缺陷分析及控制汽车车身的焊装质量直接决定着整车的质量,车身的焊接缺陷,会直接对安全性及功能性产生影响,会导致车身强度不够、功能组件失效无法安装、表面缺陷产生对使用者的伤害,还会导致噪声和车门关闭障碍的发生。4.1 DCO5电阻点焊常见缺陷及解决办法(1)烧穿现象烧穿为在焊点的中心部位发生穿孔缩孔现象,会降低焊点的强度,特别是关键焊点,会产生较大的影响。 焊点穿孔如图4.1所示。缩孔图4.1电阻点焊烧穿示意图烧穿的原因及解决办法: 1)点焊工艺参数问题,电流过大、点焊时间过长、维持时间短、电极压力不足等,可以通过调整相应的点焊工艺参数,适当减小焊接电流和焊接时间、增加维持时间、提搞电极压力来解决烧穿问题。2)电极头端面小或者电极头及板材上有杂质,使电流过于集中,从而导致烧穿。在焊前应打磨电极头, 清洁待焊板材表面。(2)焊接裂纹焊接裂纹在点焊结束后,在焊点表面出现裂纹。焊接裂纹如图4.2裂纹 图4.2电阻点焊焊接裂纹示意图焊接裂纹的原因及解决办法:1)点焊工艺参数问题,电极压力不足、焊接时间过长、锻压压力不足、加得不及时等,可以通过调整点焊工艺参数,适当提高电极压力、适当减少焊接时间等来解决焊接裂纹问题。2)电极的冷却作用差,使点焊焊点结晶时间过长出现焊接裂纹,在焊接前确认冷却水管路通畅,提高电极的冷去作用。(3)焊点毛刺焊点毛刺在点焊结束后,在焊点周围出现毛刺,用手强力触摸会受伤。焊点毛刺如图 4.3所示毛刺图4.3电阻点焊焊点毛刺示意图焊点毛刺的原因及解决办法:1)点焊工艺参数问题,点焊电流大、点焊时间短以及在第2个点焊阶段,大多数焊钳设置电流从0直接加大到设定电流,还有点焊后没有设置保持时间等;应适当减小点焊电流,延长点焊时间。2)设置电流从0上升到设定电流的时间为23个周波;设置加压保持时间23个周波。其他方面的原因有边缘焊点、焊件表面有杂质、电极头端面过小(新电极头端面较小)。(4)焊接变形焊接变形焊接后点焊面与板材扭曲超过25。点焊变形会对零件的外观质量及搭接零件的屈服强度有较大影响,特别是车架前后大梁搭接处,如出现扭曲,易造成前后大梁的严重变形,并且因为电极接触表面变化,容易发生脱焊、虚焊等问题。焊点扭曲变形如图4.5所示图4.5电阻点焊焊接变形示意图焊接变形的原因及解决办法: 1)点焊焊点变形的一个根本原因就是焊钳与被焊零件表面不垂直;首先在点焊钳设计结构上一定要能够满足点焊时焊钳与零件垂直,其次员工在操作时要按照标准化操作,将点焊钳摆放到正确位置后进行点焊。(5)位置偏差位置偏差是指实际焊点位置与设定焊点位置偏离,在10mm以上(未指定位置的不能偏离 20 mm以上),焊点位置偏差会对局部焊点强度造成影响,关键部位会对整车强度造成严重影响。解决办法:焊点位置偏差可以通过制作焊点位置标识装置来消除焊点位置偏差。 焊点位置标识如图4.6所示。图4.6电阻点焊焊接位置标示另外,还可制作焊点间距目视杆,如图4.7所示。采用焊点间距目视杆进行点焊时, 焊背面焊点以正面一个焊点为起始基准,从而可以保证背面焊点分布均匀。图4.7电阻点焊焊接位置目视标示(6)边缘焊点边缘焊点指焊点位置为落在2层板搭接的边缘位置,板材未将焊点完全包住,这是不可接受的点焊缺陷,如图4.8所示,边缘焊点对焊点的强度同样会产生不良影响。图4.8边缘点焊示意图在设计焊钳及焊点位置时,尽量避免边缘焊点,若存在边缘点焊部位,则可在焊钳上或拼台上面设计焊接限位,减少边缘焊点,如图4.9所示。图4.9焊接位置导向示意图(7) 压痕过深电极加压在板材上留下的压痕深度超过薄板厚度的 50时,为不合格焊点,如图4.12所示。图4.12焊点压痕过深示意图压痕过深原因及解决办法: 1)压痕过深产生的原因有电极接触面积小,电极压力大, 焊接时间过长。 解决措施有: 在保证电极头面积达到要求的情况下减小电极压力,在保证点焊强度的情况下适当缩短焊接时间。(8)虚焊虚焊焊点熔核直径小于要求的最小值 dmin,焊点发白为虚焊。如图4.10所示。图4.10焊点发白示意图虚焊产生的原因及解决办法: 1)一个最常见原因为点焊工艺参数,电流过小,点焊时间过短。解决措施为加大电流,延长点焊时间。2)其他可能原因为焊点距离过小,点焊电流分流;焊接铜板分流;电极头使用时间过久不修模,端面墩粗;焊点扭曲;电极表面有杂物等。解决措施为按工艺要求进行点焊工艺参数调整,按电极头使用要求对电极头进行打磨。如表4.1和图4.11所示,合格焊点应满足:焊点直径(Dd)/2dmin。表4.1熔核直径薄板厚度/mm焊点直径最小值/mm0.40-0.593.00.60-0.793.50.80-1.394.01.40-1.994.52.00-2.495.02.50-2.995.53.0-3.496.03.50-3.996.54.00-4.507.0注:1.当2层焊时,在参考表时,以最薄的板材尺寸计算;2.3层及3层以上点焊时,用第二薄的钢板确定最小尺寸。 图4.11焊点直径示意图(9)粘铜现象粘铜现象在点焊结束后,在焊点表面附着有电极材料融化后铜材。图4.13粘铜示意图粘铜现象产生的原因及解决办法:1)由于电极冷却作用不足,导致铜电极在长时间的服役过程中温度过高,使部分电极熔化,在力的作用效果下过渡到点焊焊点表面;加强冷却水循环的速度,彻底检查冷却系统是否工作正常,或者更换更加耐高温的电极材料。2)由于电极在修磨时没有完全打磨平整,导致在点焊过程中毛刺的电极在强大电流作用下融化混入点焊焊点表面;加强电极修磨管理务必使每次电极打磨得都非常平整。4.2点焊缺陷在生产中的全面控制为保证车身质量,防止不良产品流入下道工序及废品出厂,对点焊质量应有一套完整的质量监控体系。一般来说,车身点焊质量监控可以分为三部分内容:前期预防、中间控制和焊后检验。前期预防是指,在进行电阻点焊之前,采取相应的措施防止不合格焊点的生成。通常,主要措施是对焊接设备进行日常监测。如定期核对焊接参数,以确保设定值符合工艺要求;定期测量焊接的实际压力、实际电流及通电时间,确保输出值与设定值一致;定期测量次级回路的电阻值,尤其是次级无感电缆