【创新设计】2014届高考数学一轮总复习 第十一篇 第3讲 随机事件的概率 理 湘教版.doc
-
资源ID:45526691
资源大小:100KB
全文页数:6页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【创新设计】2014届高考数学一轮总复习 第十一篇 第3讲 随机事件的概率 理 湘教版.doc
第3讲 随机事件的概率A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A对立事件 B不可能事件C互斥但不对立事件 D以上答案都不对解析由于甲和乙有可能一人得到红牌,一人得不到红牌,也有可能甲、乙两人都得不到红牌,故两事件为互斥但不对立事件答案C2(2013·日照模拟)从一箱产品中随机抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A0.7 B0.65 C0.35 D0.3解析由对立事件可得P1P(A)0.35.答案C3(2013·忠县模拟)盒中装有10个乒乓球,其中6个新球,4个旧球不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为()A. B. C. D.解析第一次结果一定,盒中仅有9个乒乓球,5个新球4个旧球,所以第二次也取到新球的概率为.答案C4(2013·揭阳二模)把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于()A. B. C. D.解析法一P(B|A).法二A包括的基本事件为正,正,正,反,AB包括的基本事件为正,正,因此P(B|A).答案A二、填空题(每小题5分,共10分)5对飞机连续射击两次,每次发射一枚炮弹设A两次都击中飞机,B两次都没击中飞机,C恰有一次击中飞机,D至少有一次击中飞机,其中彼此互斥的事件是_,互为对立事件的是_解析设I为对飞机连续射击两次所发生的所有情况,因为AB,AC,BC,BD.故A与B,A与C,B与C,B与D为彼此互斥事件,而BD,BDI,故B与D互为对立事件答案A与B、A与C、B与C、B与DB与D6(2013·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为_解析记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C彼此互斥,由题意可得P(B)0.03,P(C)0.01,所以P(A)1P(BC)1P(B)P(C)10.030.010.96.答案0.96三、解答题(共25分)7(12分)某战士甲射击一次,问:(1)若事件A(中靶)的概率为0.95,事件(不中靶)的概率为多少?(2)若事件B(中靶环数大于6)的概率为0.7,那么事件C(中靶环数不大于6)的概率为多少?解(1)事件A(中靶)的概率为0.95,根据对立事件的概率公式得到的概率为10.950.05.(2)由题意知中靶环数大于6与中靶环数不大于6是对立事件,事件B(中靶环数大于6)的概率为0.7,事件C(中靶环数不大于6)的概率为10.70.3.8(13分)某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会(1)求他乘火车或乘飞机去开会的概率;(2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解(1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的故P(A1A4)P(A1)P(A4)0.30.40.7.(2)设他不乘轮船去开会的概率为P,则P1P(A2)10.20.8.(3)由于0.30.20.5,0.10.40.5,1(0.30.2)0.5,1(0.10.4)0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1甲:A1,A2是互斥事件;乙:A1,A2是对立事件那么()A甲是乙的充分但不必要条件B甲是乙的必要但不充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件答案B2从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A. B. C. D.解析从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1.答案D二、填空题(每小题5分,共10分)3某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如下图所示),则该中学参加本次数学竞赛的人数为_,如果90分以上(含90分)获奖,那么获奖的概率大约是_解析由题图可知,参加本次竞赛的人数为46875232;90分以上的人数为75214,所以获奖的频率为0.437 5,即本次竞赛获奖的概率大约是0.437 5.答案320.437 54(2013·浙江五校联考)在100件产品中有95件合格品,5件不合格品现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为_解析设A第一次取到不合格品,B第二次取到不合格品,则P(AB),所以P(B|A)答案三、解答题(共25分)5(12分)(2013·梁平模拟)黄种人群中各种血型的人所占的比如下表所示:血型ABABO该血型的人所占比/%2829835已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A,B,C,D,它们是彼此互斥的由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件BD.根据互斥事件的概率加法公式,有P(BD)P(B)P(D)0.290.350.64.(2)法一由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件AC,且P(AC)P(A)P(C)0.280.080.36.法二因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P()1P(BD)10.640.36.即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.6(13分)(2011·陕西)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望解(1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i1,2.用频率估计相应的概率可得P(A1)0.10.20.30.6,P(A2)0.10.40.5,P(A1)P(A2),甲应选择L1;P(B1)0.10.20.30.20.8,P(B2)0.10.40.40.9,P(B2)P(B1),乙应选择L2.(2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)0.6,P(B)0.9,又由题意知,A,B独立,P(X0)P()P()P()0.4×0.10.04,P(X1)P(BA)P()P(B)P(A)P()0.4×0.90.6×0.10.42,P(X2)P(AB)P(A)P(B)0.6×0.90.54.X的分布列为X012P0.040.420.54E(X)0×0.041×0.422×0.541.5.6