【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第16讲 立体几何综合问题(含详解).doc
-
资源ID:45536831
资源大小:202KB
全文页数:3页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第16讲 立体几何综合问题(含详解).doc
立体几何综合问题题型预测立体几何是高中数学的重要内容,是考察各种能力的重要载体,考察的方法常常是将计算和推理融为一体。增强立几试题的应用性与开放性可能是未来高考命题的趋势。范例选讲例1如图,已知面,于D,。(1)令,试把表示为的函数,并求其最大值;(2)在直线PA上是否存在一点Q,使得?讲解(1)为寻求与的关系,首先可以将转化为。 面,于D, 。 。 。 为在面上的射影。 ,即。 。即的最大值为,等号当且仅当时取得。(2)由正切函数的单调性可知:点Q的存在性等价于:是否存在点Q使得。令,解得:,与交集非空。 满足条件的点Q存在。点评本题将立体几何与代数融为一体,不仅要求学生有一定的空间想象力,而且,作好问题的转化是解决此题的关键。例2如图所示:正四棱锥中,侧棱与底面所成角的正切值为。(1)求侧面与底面所成二面角的大小;(2)若E是PB中点,求异面直线PD与AE所成角的正切值;(3)在侧面上寻找一点F,使得EF侧面PBC。试确定点F的位置,并加以证明。讲解: (1)连交于点,连PO,则PO面ABCD, PAO就是与底面所成的角, tanPAO=。设AB=1,则PO=AOtanPAO = 。设F为AD中点,连FO、PO,则OFAD,所以,PFAD,所以,就是侧面与底面所成二面角的平面角。在Rt中, 。即面与底面所成二面角的大小为(2)由(1)的作法可知:O为BD中点,又因为E为PD中点,所以,。 就是异面直线PD与AE所成的角。在Rt中,。 。由,可知:面。所以,。在Rt中,。 异面直线PD与AE所成的角为。(3)对于这一类探索性的问题,作为一种探索,我们首先可以将条件放宽一些,即先找到面的一条垂线,然后再平移到点E即可。为了达到上述目的,我们可以从考虑面面垂直入手,不难发现:。延长交于点,连接。设为中点,连接。 四棱锥为正四棱锥且为中点,所以,为中点, ,。 。 面。 , 为正三角形。 , 。取AF中点为K,连EK,则由及得四边形为平行四边形,所以,。点评开放性问题中,“退一步去想”(先只满足部分条件)、“将命题加强”往往是找到解题的突破口的方法。3