【创新设计】2014届高考数学一轮总复习 第四篇 第3讲 三角函数的图象与性质 理 湘教版.doc
-
资源ID:45538169
资源大小:102KB
全文页数:7页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【创新设计】2014届高考数学一轮总复习 第四篇 第3讲 三角函数的图象与性质 理 湘教版.doc
第3讲 三角函数的图象与性质A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1(2011·山东)若函数f(x)sin x(0)在区间上单调递增,在区间上单调递减,则 ()A. B. C2 D3解析由题意知f(x)的一条对称轴为x,和它相邻的一个对称中心为原点,则f(x)的周期T,从而.答案B2已知函数f(x)sin(x)cos(x)是偶函数,则的值为()A0 B. C. D.解析据已知可得f(x)2sin,若函数为偶函数,则必有k(kZ),又由于,故有,解得,经代入检验符合题意答案B3函数y2sin(0x9)的最大值与最小值之和为 ()A2 B0 C1 D1解析0x9,x,sin1,2sin2.函数y2sin(0x9)的最大值与最小值之和为2.答案A4(2011·安徽)已知函数f(x)sin(2x),其中为实数若f(x)对xR恒成立,且ff(),则f(x)的单调递增区间是 ()A.(kZ)B.(kZ)C.(kZ)D.(kZ)解析由f(x)sin(2x),且f(x)对xR恒成立,f±1,即sin±1.k(kZ)k(kZ)又f>f(),即sin()>sin(2),sin >sin .sin <0.对于k(kZ),k为奇数f(x)sin(2x)sinsin.由2m2x2m(mZ),得mxm(mZ),f(x)的单调递增区间是(mZ)答案C二、填空题(每小题5分,共10分)5定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是,且当x时,f(x)sin x,则f的值为_解析fffsin .答案6若f(x)2sin x(0<<1)在区间上的最大值是,则_.解析由0x,得0x<,则f(x)在上单调递增,且在这个区间上的最大值是,所以2sin ,且0<<,所以,解得.答案三、解答题(共25分)7(12分)设f(x).(1)求f(x)的定义域;(2)求f(x)的值域及取最大值时x的值解(1)由12sin x0,根据正弦函数图象知:定义域为x|2kx2k,kZ(2)1sin x1,112sin x3,12sin x0,012sin x3,f(x)的值域为0,当x2k,kZ时,f(x)取得最大值8(13分)(2013·巫溪模拟)已知函数f(x)cos2sinsin.(1)求函数f(x)的最小正周期和图象的对称轴;(2)求函数f(x)在区间上的值域解(1)f(x)cos2sinsincos 2xsin 2x(sin xcos x)(sin xcos x)cos 2xsin 2xsin2xcos2xcos 2xsin 2xcos 2xsin.最小正周期T,由2xk(kZ),得x(kZ)函数图象的对称轴为x(kZ)(2)x,2x,sin1.即函数f(x)在区间上的值域为.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1(2012·新课标全国)已知>0,函数f(x)sin在单调递减,则的取值范围是 ()A. B.C. D(0,2解析取,f(x)sin,其减区间为,kZ,显然k,k,kZ,排除B,C.取2,f(x)sin,其减区间为,kZ,显然,kZ,排除D.答案A2已知>0,0<<,直线x和x是函数f(x)sin(x)图象的两条相邻的对称轴,则 ()A. B. C. D.解析由题意可知函数f(x)的周期T2×2,故1,f(x)sin(x),令xk(kZ),将x代入可得k(kZ),0<<,.答案A二、填空题(每小题5分,共10分)3(2013·徐州模拟)已知函数f(x)(sin xcos x)|sin xcos x|,则f(x)的值域是_解析f(x)(sin xcos x)|sin xcos x|画出函数f(x)的图象,可得函数的最小值为1,最大值为,故值域为.答案4(2012·西安模拟)下列命题中:2k(kZ)是tan 的充分不必要条件;函数f(x)|2cos x1|的最小正周期是;在ABC中,若cos Acos B>sin Asin B,则ABC为钝角三角形;若ab0,则函数yasin xbcos x的图象的一条对称轴方程为x.其中是真命题的序号为_解析2k(kZ)tan ,而tan / 2k(kZ),正确f(x)|2cos(x)1|2cos x1|2cos x1|f(x),错误cos Acos B>sin Asin B,cos Acos Bsin Asin B>0,即cos(AB)>0,0<AB<,0<AB<,C为钝角,正确ab0,ba,yasin xbcos xasin xacos xasin,x是它的一条对称轴,正确答案三、解答题(共25分)5(12分)已知函数f(x)coscos,g(x)sin 2x.(1)求函数f(x)的最小正周期;(2)求函数h(x)f(x)g(x)的最大值,并求使h(x)取得最大值的x的集合解(1)f(x)coscos·cos2xsin2xcos 2x,f(x)的最小正周期为.(2)由(1)知h(x)f(x)g(x)cos 2xsin 2xcos,当2x2k(kZ),即xk(kZ)时,h(x)取得最大值.故h(x)取得最大值时,对应的x的集合为.6(13分)已知a0,函数f(x)2asin2ab,当x时,5f(x)1.(1)求常数a,b的值;(2)设g(x)f且lg g(x)0,求g(x)的单调区间解(1)x,2x.sin,又a >0,2asin2a,af(x)b,3ab,又5f(x)1,b5,3ab1,因此a2,b5.(2)由(1)得a2,b5,f(x)4sin1,g(x)f4sin14sin1,又由lg g(x)0,得g(x)1,4sin11,sin,2k2x2k,kZ,其中当2k2x2k,kZ时,g(x)单调递增,即kxk,kZ,g(x)的单调增区间为,kZ.又当2k2x2k,kZ时,g(x)单调递减,即kxk,kZ.g(x)的单调减区间为,kZ.综上,g(x)的递增区间为(kZ);递减区间为(kZ)7