欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    合理构造函数解导数问题.doc

    • 资源ID:4583078       资源大小:849.46KB        全文页数:9页
    • 资源格式: DOC        下载积分:14金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要14金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    合理构造函数解导数问题.doc

    合理构造函数解导数问题构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。1山东省实验中学2009届高三第三次诊断考试(数学理)22已知函数 (注:)(1)若函数在上为增函数,求正实数的取值范围;(2)当时,若直线与函数的图象在上有两个不同交点,求实数的取值范围:(3)求证:对大于1的任意正整数解:(1)因为 所以依题意可得,对恒成立,所以 对恒成立,所以 对恒成立,即(2)当时,若,单调递减;若单调递增;故在处取得极小值,即最小值又所以要使直线与函数的图象在上有两个不同交点,实数的取值范围应为,即;(3)当时,由可知,在上为增函数,当时,令,则,故,即所以故 相加可得又因为所以对大于1的任意正整书2【2007年山东理】 (22)(本小题满分14分)设函数,其中(I)当时,判断函数在定义域上的单调性;(II)求函数的极值点;福建数学网(III)证明对任意的正整数,不等式都成立【解】()由题意知,的定义域为,设,其图象的对称轴为,当时,即在上恒成立,当时,当时,函数在定义域上单调递增()由()得:当时,函数无极值点时,有两个相同的解,时, 时,时,函数在上无极值点当时,有两个不同解,时,即,福建数学网时,随的变化情况如下表:极小值由此表可知:时,有惟一极小值点,当时, ,此时,随的变化情况如下表:极大值极小值由此表可知:时,有一个极大值和一个极小值点;综上所述:时,有惟一最小值点;时,有一个极大值点和一个极小值点;时,无极值点()当时,函数,福建数学网令函数,则当时,所以函数在上单调递增,又 时,恒有,即恒成立故当时,有对任意正整数取,则有所以结论成立福建数学网 例1:(2009年宁波市高三第三次模拟试卷22题)已知函数.(1) 若为的极值点,求实数的值;(2) 若在上增函数,求实数的取值范围;(3) 若时,方程有实根,求实数的取值范围。解:(1)因为是函数的一个极值点,所以,进而解得:,经检验是符合的,所以 (2)显然结合定义域知道在上恒成立,所以且。同时此函数是时递减,时递增, 故此我们只需要保证,解得:(3)方法一、变量分离直接构造函数解:由于,所以: 当时,所以在上递增;当时,所以在上递减; 又 当时,所以在上递减;当时,所以上递增;当时,所以在上递减;又当时,当时,则且的取值范围为原函数草图二阶导数草图一阶导数草图,方法二、 构造: 从而在上为增函数;从而在上为减函数 而 分析点评:第(3)问的两种解法难易繁杂一目了然,关键在合理构造函数上。那么怎样合理构造函数呢?(1)抓住问题的实质,化简函数1、已知是二次函数,不等式的解集是,且在区间上的最大值. (1)求的解析式;(2)是否存在自然数,使得方程在区间内有且只有两个不等的实数根?若存在,求出所有的值;若不存在,请说明理由。解:(1) (2)假设满足要求的实数存在,则,即有: ,即有:构造函数 画图分析:进而检验,知,所以存在实数使得在区间内有且只有两个不等的实数根。点评:本题关键是构造了函数,舍弃了原函数中分母问题得到了简化。变式练习:设函数,求已知当时,恒成立,求实数的取值范围。(2)抓住常规基本函数,利用函数草图分析问题:例: 已知函数的图像在点处的切线方程为设(1) 求证:当时,恒成立;(2) 试讨论关于的方程根的个数。解证:(1) (2)方程从而 因为所以方程可变为 令,得: 当时,在上为增函数;当时,在上为减函数;当时, 又所以函数在同一坐标系的大致图像如图所示 当即时,方程无解; 当即时,方程一解; 当即时,方程有2个根。分析点评:一次函数,二次函数,指对数函数,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。(3)复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数在区间上单调递减,在区间上单调递增。(1) 求实数的值.(2) 若关于的方程有3个不同的实数解,求实数的取值范围.(3) 若函数的图像与坐标轴无交点,求实数的取值范围。解:(1)利用 得: (2)因为 得 列表得因此有极大值极小值作出的示意图,如图:因为关于的方程有3个不同的实数解,令即关于的方程在上有3个不同的实数解,所以的图像与直线在上有3个不同的交点。而的图像与的图像一致。即(3)函数的图像与坐标轴无交点,可以分以下2种情况:当函数的图像与轴无交点时,则必须有无解,而函数的值域为所以解得当函数的图像与轴无交点时,则必须有不存在,即或,有意义,所以,解得. 由函数存在,可知有解,解得,故实数的取值范围为分析点评:复合函数尤其是两次复合,一定要好好掌握,构造两种函数逐层分解研究,化繁为简,导数仍然是主要工具。

    注意事项

    本文(合理构造函数解导数问题.doc)为本站会员(ge****by)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开