2021版高考数学一轮复习核心素养测评十五利用导数研究函数的极值最值理北师大版.doc
核心素养测评十五 利用导数研究函数的极值、最值(30分钟60分)一、选择题(每小题5分,共25分)1.设函数f(x)=+ln x则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点 D.x=2为 f(x)的极小值点【解析】选D.f(x)=-+=,由f(x)>0,得x>2,所以f(x)的增区间为,f(x)的减区间为(0,2),所以f(x)只有极小值,极小值点为x=2.2.已知函数f(x)是R上的可导函数,f(x)的导函数f(x)的图像如图,则下列结论正确的是()A.a,c分别是极大值点和极小值点B.b,c分别是极大值点和极小值点C.f(x)在区间(a,c)上是增函数D.f(x)在区间(b,c)上是减函数【解析】选C.由极值点的定义可知,a是极小值点,无极大值点;由导函数的图像可知,函数f(x)在区间(a,+)上是增函数.3.(2020·榆林模拟)已知x=2是函数f(x)=x3-3ax+2的极小值点,那么函数f(x)的极大值为()A.15B.16C.17D.18【解析】选D.因为x=2是函数f(x)=x3-3ax+2的极小值点,所以f(2)=12-3a=0,解得a=4,所以函数f(x)的解析式为f(x)=x3-12x+2,f(x)=3x2-12,由f(x)=0,得x=±2,故函数f(x)在(-2,2)上是减少的,在(-,-2),(2,+)上是增加的,由此可知当x=-2时,函数f(x)取得极大值f(-2)=18.4.(2020·湘潭模拟)某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植是8万斤,每种植一斤藕,成本增加0.5元,销售额函数是f(x)=-x3+ax2+x,x是莲藕种植量,单位:万斤;销售额的单位:万元,a是常数,若种植2万斤,利润是2.5万元,则要使利润最大,每年种植莲藕()A.8万斤B.6万斤C.3万斤D.5万斤【解析】选B.设销售利润为g(x),得g(x)=-x3+ax2+x-1-x=-x3+ax2-1,当x=2时,g(2)=-×23+a×22-1=2.5,解得a=2.所以g(x)=-x3+x2-1,g(x)=-x2+x=-x(x-6),所以函数g(x)在(0,6)上单调递增,在(6,8)上单调递减.所以当x=6时,函数g(x)取得极大值即最大值.5.若函数f(x)=ax-ln x在区间(0,e上的最小值为3,则实数a的值为 ()A.e2B.2eC.D.【解题指南】(1)判断单调区间,把a分为a0与a>0两种情况来确定单调区间,而a>0时又要将与区间(0,e进行比较讨论;(2)根据各种情况的单调区间确定各种情况下的最小值,每计算一个a的值都要记得检验是否满足前提范围.【解析】选A.因为f(x)=ax-ln x,(x>0),所以f(x)=a-=(x>0).当a0时,f(x)<0,则f(x)在(0,e上为减函数,此时f(x)min=f(e)=ae-1=3,解得a=>0(舍去).当a>0时,当0<x<时,f(x)<0,f(x)在上为减函数,当x时,f(x)0,f(x)在上为增函数.所以当0<e 时,即a时,x=为f(x)在(0,e上的极小值点也是最小值点且最小值为f=1-ln =3,解得a=e2.当>e时,即a<时,f(x)在(0,e上为减函数,f(x)min=f(e)=ae-1=3,解得a=>(舍去),综上所述:a=e2.二、填空题(每小题5分,共15分)6.(2019·濮阳模拟)函数f(x)=ex-2x的最小值为_. 【解析】f(x)=ex-2,令f(x)=ex-2=0,解得x=ln 2.可得:函数f(x)在(-,ln 2)上单调递减,在(ln 2,+)上单调递增.所以x=ln 2时,函数f(x)取得极小值也是最小值,f(ln 2)=2-2ln 2.答案:2-2ln 27.(2020·咸阳模拟)已知y=f(x)是奇函数,当x(0,2)时,f(x)=ln x-ax,当x(-2,0)时,f(x)的最小值为1,则a=_. 【解析】由题意知,当x(0,2)时,f(x)的最大值为-1.令f(x)=-a=0,得x=,当0<x<时,f(x)>0;当x>时,f(x)<0.所以f(x)max=f=-ln a-1=-1,解得a=1.答案:18.已知函数f(x)=当x(-,m时,函数f(x)的取值范围为-16,+),则实数m的取值范围是_. 【解析】当x0时,f(x)=3(2+x)(2-x),所以当x<-2时,f(x)<0,函数f(x)单调递减;当-2<x0时,f(x)>0,函数f(x)单调递增,所以函数f(x)在x=-2处取最小值f(-2)=-16.画出函数的图像,结合函数的图像得-2m8时,函数f(x)总能取到最小值-16,故m的取值范围是-2,8. 答案: -2,8三、解答题(每小题10分,共20分)9.若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1) 求a,b的值.(2) 设函数g(x)的导数g(x)=f(x)+2,求g(x)的极值点.【解析】(1) 由题设知f(x)=3x2+2ax+b,且f(-1)=3-2a+b=0,f(1)=3+2a+b=0,解得a=0,b=-3.(2) 由(1) 知f(x)=x3-3x,则g(x)=f(x)+2=(x-1)2(x+2),所以g(x)=0的根为x1=x2=1,x3=-2,即函数g(x)的极值点只可能是1或-2.当x<-2时,g(x)<0,当-2<x<1时,g(x)>0,当x>1时,g(x)>0,所以-2是g(x)的极值点,1不是g(x)的极值点.10.已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值.(2)若f(x)在区间(0,e上的最大值为-3,求a的值.【解析】(1)易知f(x)的定义域为(0,+),当a=-1 时,f(x)=-x+ln x,f(x)=-1+=,令f(x)=0,得x=1.当0<x<1时,f(x)>0;当x>1时,f(x)<0.所以f(x)在(0,1)上是增函数,在(1,+)上是减函数.所以f(x)max=f(1)=-1.所以当a=-1时,函数f(x)在(0,+)上的最大值为-1.(2) f(x)=a+,x,.若a-,则f(x)0,从而f(x)在上单调递增,所以f(x)max=f(e)=ae+10,不符合题意.若a<-,令f(x)>0得a+>0,结合x,解得0<x<-;令f(x)<0得a+<0,结合x,解得-<xe.从而f(x)在上单调递增,在上单调递减,所以f(x)max=f=-1+ln,令-1+ln=-3,得ln=-2,所以a=-e2,因为-e2<-,所以a=-e2为所求,故实数a的值为-e2.(15分钟35分)1.(5分)设函数f(x)=(x+1)ex+1,则()A.x=2为f(x)的极大值点B.x=2为f(x)的极小值点C.x=-2为f(x)的极大值点D.x=-2为f(x)的极小值点【解析】选D.函数f(x)=(x+1)ex+1,所以f(x)=(x+2)ex,令(x+2)ex=0,可得x=-2,当x<-2时,f(x)<0,函数是减函数;当x>-2时,f(x)>0,函数是增函数,所以x=-2是函数的极小值点.2.(5分)用长为30 m的钢条围成一个长方体形状的框架(即12条棱长总和为30 m),要求长方体的长与宽之比为32,则该长方体最大体积是()A.24 m3B.15 m3C.12 m3D.6 m3【解析】选B.设该长方体的宽是x m,由题意知,其长是 m,高是= m(0<x<3),则该长方体的体积V(x)= x·· =-x3+x2,V(x)=-x2+x,由V(x)=0,得到x=2(x=0舍去),且当0<x<2时, V(x)>0;当2<x<3时, V(x)<0,即体积函数V(x)在x=2处取得极大值V(2)=15,也是函数V(x)在定义域上的最大值.所以该长方体体积的最大值是15 m3.【变式备选】用边长为120 cm的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为()A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3【解析】选B.设水箱底长为x cm,则高为 cm.由得0<x<120.设水箱的容积为y cm3,则有y=-x3+60x2.求导数,有y=-x2+120x.令y=0,解得x=80(x=0舍去).当x(0,80)时,y>0;当x(80,120)时,y<0.因此,x=80是函数y=-x3+60x2的极大值点,也是最大值点,此时y=128 000.3.(5分)(2020·昆明模拟)已知函数f(x)=ax2+bx+cln x(a>0)在x=1和x=2处取得极值,且极大值为-,则函数f(x)在区间(0,4上的最大值为 ()A.0B.-C.2ln 2-4D.4ln 2-4【解析】选D.函数的导数为f(x)=2ax+b+=.因为f(x)在x=1和x=2处取得极值,所以f(1)=2a+b+c=0,f(2)=4a+b+=0 ,因为f(x)极大值为-,a>0,所以由函数性质知当x=1时,函数取得极大值为-,则f(1)=a+b+cln 1=a+b=-,由得a=,b=-3,c=2,即f(x)=x2-3x+2ln x,f(x)=x-3+=,由f(x)>0得2<x4或0<x<1,此时为增函数,由f(x)<0得1<x<2,此时f(x)为减函数,则当x=1时,f(x)取得极大值,极大值为-,又f(4)=8-12+2ln 4=4ln 2-4>-,即函数在区间(0,4上的最大值为4ln 2-4.4.(10分)(2019·成都模拟)已知函数f(x)=aln x-x2+x-.(1)当曲线f(x)在x=3时的切线与直线y=-4x+1平行,求曲线f(x)在处的切线方程.(2)求函数f(x)的极值,并求当f(x)有极大值且极大值为正数时,实数a的取值范围.【解析】(1)f(x)=-2x+a-2.由题意得f(3)=-2×3+a-2=-4,得a=3.当x=1时,f(1)=-12+×1-=-,f(1)=-2×1+3-2=2,故曲线f(x)在处的切线方程为y+=2,即8x-4y-17=0.(2)f(x)=-2x+a-2=(x>0),当a0时,f(x)0,所以f(x)在上单调递减,f(x)无极值.当a>0时,由f(x)=0得x=,随x的变化,f(x)、f(x)的变化情况如下:xf(x)+0-f(x)极大值故f(x)有极大值,无极小值,极大值为f=aln-+×-=aln-a,由aln-a>0,结合a>0可得a>2e,所以当f(x)有极大值且极大值为正数时,实数a的取值范围是.5.(10分)(2020·济宁模拟)已知函数f(x)=ln x-xex+ax(aR).(1)若函数f(x)在1,+)上单调递减,求实数a的取值范围.(2)若a=1,求f(x)的最大值.【解题指南】(1)由题意分离参数,将原问题转化为函数求最值的问题,然后利用导函数即可确定实数a的取值范围.(2)结合函数的解析式求导函数,将其分解因式,利用导函数研究函数的单调性,最后利用函数的单调性结合函数的解析式即可确定函数的最大值.【解析】(1)由题意知,f(x)=-(ex+xex)+a=-(x+1)ex+a0 在1,+)上恒成立,所以a(x+1)ex-在1,+)上恒成立.令g(x)=-+(x+1)ex,则g(x)=(x+2)ex+>0,所以g(x)在1,+)上单调递增,所以g(x)min=g(1)=2e-1,所以a2e-1.(2)当a=1时,f(x)=ln x-xex+x(x>0),则f(x)=-(x+1)ex+1=(x+1),令m(x)=-ex,则m(x)=-ex<0,所以m(x)在(0,+)上单调递减.由于m>0,m(1)<0,所以存在x0>0满足m(x0)=0,即=.当x(0,x0),m(x)>0,f(x)>0;当x(x0,+)时,m(x)<0,f(x)<0.所以f(x)在(0,x0)上单调递增,在(x0,+)上单调递减.所以f(x)max=f(x0)=ln x0-x0+x0,因为=,所以x0=-ln x0,所以f(x0)=-x0-1+x0=-1,所以f(x)max=-1.(2019·新乡模拟)已知函数f(x)=x2-(a+1)x+aln x.(1)当a=-4时,求f(x)的单调区间.(2)已知a(1,2,bR,函数g(x)=x3+bx2-(2b+4)x+ln x,若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.【解析】 (1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+),f(x)=x+3-=,当x>1时,f(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+);当0<x<1时,f(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)f(x)=,g(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.因为a(1,2,所以f(x)的极小值点为a,则g(x)的极小值点为a.所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a-.因为a(1,2,所以a-×2-=.故g(x)的极大值不大于. - 11 -