欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021年甘肃省白银市中考数学试卷(含解析)---副本.docx

    • 资源ID:46155905       资源大小:2.17MB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年甘肃省白银市中考数学试卷(含解析)---副本.docx

    努力!加油!2021年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。1(3分)(2021白银)3的倒数是AB3CD2(3分)(2021白银)2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是ABCD3(3分)(2021白银)下列运算正确的是ABCD4(3分)(2021白银)中国疫苗撑起全球抗疫“生命线” 中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献数据“50亿”用科学记数法表示为ABCD5(3分)(2021白银)将直线向下平移2个单位长度,所得直线的表达式为ABCD6(3分)(2021白银)如图,直线,的顶点在上,若,则ABCD7(3分)(2021白银)如图,点,在上,则ABCD8(3分)(2021白银)我国古代数学著作孙子算经有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有人,辆车,则可列方程组为ABCD9(3分)(2021白银)对于任意的有理数,如果满足,那么我们称这一对数,为“相随数对”,记为若是“相随数对”,则ABC2D310(3分)(2021白银)如图1,在中,于点动点从点出发,沿折线方向运动,运动到点停止设点的运动路程为,的面积为,与的函数图象如图2,则的长为A3B6C8D9二、填空题:本大题共8小题,每小题3分,共24分。11(3分)(2021白银)因式分解:12(3分)(2021白银)关于的不等式的解集是13(3分)(2021白银)关于的方程有两个相等的实数根,则的值是14(3分)(2021白银)开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温36.336.436.536.636.736.8天数(天233411这14天中,小芸体温的众数是15(3分)(2021白银)如图,在矩形中,是边上一点,是边的中点,则16(3分)(2021白银)若点,在反比例函数的图象上,则(填“”或“”或“” 17(3分)(2021白银)如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为 18(3分)(2021白银)一组按规律排列的代数式:,则第个式子是三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。19(4分)(2021白银)计算:20(4分)(2021白银)先化简,再求值:,其中21(6分)(2021白银)在阿基米德全集中的引理集中记录了古希腊数学家阿基米德提出的有关圆的一个引理如图,已知,是弦上一点,请你根据以下步骤完成这个引理的作图过程(1)尺规作图(保留作图痕迹,不写作法);作线段的垂直平分线,分别交于点,于点,连接,;以点为圆心,长为半径作弧,交于点,两点不重合),连接,(2)直接写出引理的结论:线段,的数量关系22(6分)(2021白银)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年年),是明代平凉韩王府延恩寺的主体建筑宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取,两处分别测得和的度数,在同一条直线上)数据收集:通过实地测量:地面上,两点的距离为,问题解决:求宝塔的高度(结果保留一位小数)参考数据:,根据上述方案及数据,请你完成求解过程23(6分)(2021白银)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法)四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。24(7分)(2021白银)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成,五个等级,并绘制了如下不完整的统计图请结合统计图,解答下列问题:等级成绩(1)本次调查一共随机抽取了 名学生的成绩,频数分布直方图中;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在 等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?25(7分)(2021白银)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计)小刚离家的距离与他所用的时间的函数关系如图2所示(1)小刚家与学校的距离为 ,小刚骑自行车的速度为 ;(2)求小刚从图书馆返回家的过程中,与的函数表达式;(3)小刚出发35分钟时,他离家有多远?26(8分)(2021白银)如图,内接于,是的直径的延长线上一点,过圆心作的平行线交的延长线于点(1)求证:是的切线;(2)若,求的半径及的值27(8分)(2021白银)问题解决:如图1,在矩形中,点,分别在,边上,于点(1)求证:四边形是正方形;(2)延长到点,使得,判断的形状,并说明理由类比迁移:如图2,在菱形中,点,分别在,边上,与相交于点,求的长28(10分)(2021白银)如图,在平面直角坐标系中,抛物线与坐标轴交于,两点,直线交轴于点点为直线下方抛物线上一动点,过点作轴的垂线,垂足为,分别交直线,于点,(1)求抛物线的表达式;(2)当时,连接,求的面积;(3)是轴上一点,当四边形是矩形时,求点的坐标;在的条件下,第一象限有一动点,满足,求周长的最小值2021年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。1(3分)(2021白银)3的倒数是AB3CD【分析】根据倒数的定义进行答题【解答】解:设3的倒数是,则,解得,故选:【点评】主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2(3分)(2021白银)2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是ABCD【分析】根据轴对称图形的概念判断求解【解答】解:不是轴对称图形,故此选项不合题意;是轴对称图形,故此选项符合题意;不是轴对称图形,故此选项不合题意;不是轴对称图形,故此选项不合题意;故选:【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图形沿某条直线折叠,如果图形的两部分能够重合,那么这个图形是轴对称图形3(3分)(2021白银)下列运算正确的是ABCD【分析】根据二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;根据二次根式的除法法则对进行判断【解答】解:、原式,所以选项的计算错误;、原式,所以选项的计算错误;、原式,所以选项的计算正确;、原式,所以选项的计算错误故选:【点评】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的乘法和除法法则4(3分)(2021白银)中国疫苗撑起全球抗疫“生命线” 中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献数据“50亿”用科学记数法表示为ABCD【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值时,是正数;当原数的绝对值时,是负数【解答】解:将50亿用科学记数法表示为故选:【点评】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值5(3分)(2021白银)将直线向下平移2个单位长度,所得直线的表达式为ABCD【分析】根据“上加下减”的原则求解即可【解答】解:将直线向下平移2个单位长度,所得的函数解析式为故选:【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键6(3分)(2021白银)如图,直线,的顶点在上,若,则ABCD【分析】根据角的和差得到,再根据两直线平行,同位角相等即可得解【解答】解:,,,,,故选:【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键7(3分)(2021白银)如图,点,在上,则ABCD【分析】连接、,可得,由圆周角定理即可得【解答】解:连接、,故选:【点评】本题主要考查圆心角、弧、弦三者的关系以及圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8(3分)(2021白银)我国古代数学著作孙子算经有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有人,辆车,则可列方程组为ABCD【分析】设共有人,辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于,的二元一次方程组,此题得解【解答】解:设共有人,辆车,依题意得:故选:【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键9(3分)(2021白银)对于任意的有理数,如果满足,那么我们称这一对数,为“相随数对”,记为若是“相随数对”,则ABC2D3【分析】根据是“相随数对”得出,再将原式化成,最后整体代入求值即可【解答】解:是“相随数对”,即,故选:【点评】本题考查代数式求值,理解“相随数对”的意义是正确计算的关键10(3分)(2021白银)如图1,在中,于点动点从点出发,沿折线方向运动,运动到点停止设点的运动路程为,的面积为,与的函数图象如图2,则的长为A3B6C8D9【分析】先根据结合图2得出,进而利用勾股定理得,再由运动结合的面积的变化,得出点和点重合时,的面积最大,其值为3,即,进而建立二元二次方程组求解,即可得出结论【解答】解:由图2知,在中,设点到的距离为,动点从点出发,沿折线方向运动,当点运动到点时,的面积最大,即,由图2知,的面积最大为3,得,(负值舍去),将代入得,或,故选:【点评】此题主要考查了等腰三角形的性质,三角形的面积公式,判断出和点和点重合时,的面积为3是解本题的关键二、填空题:本大题共8小题,每小题3分,共24分。11(3分)(2021白银)因式分解:【分析】提取公因式进行因式分解【解答】解:,故答案为:【点评】本题考查提公因式法进行因式分解,掌握提取公因式的技巧准确计算是解题关键12(3分)(2021白银)关于的不等式的解集是【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得【解答】解:移项,得:,合并同类项,得:,系数化为1,得:,故答案为:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变13(3分)(2021白银)关于的方程有两个相等的实数根,则的值是1【分析】根据根的判别式,即可得出关于的一元一次方程,解之即可得出值【解答】解:关于的方程有两个相等的实数根,解得:故答案为:1【点评】本题考查了根的判别式,牢记“当时,方程有两个相等的实数根”是解题的关键14(3分)(2021白银)开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温36.336.436.536.636.736.8天数(天233411这14天中,小芸体温的众数是36.6【分析】根据众数的定义就可解决问题【解答】解:36.6出现的次数最多有4次,所以众数是36.6故答案为:36.6【点评】本题主要考查了众数的定义,正确理解众数的意义是解决本题的关键15(3分)(2021白银)如图,在矩形中,是边上一点,是边的中点,则6【分析】先利用直角三角形斜边上的中线等于斜边的一半,求出长,再根据矩形的性质得出,然后解直角三角形即可【解答】解:是边的中点,,又四边形是矩形,,在中,,故答案为:6【点评】本题考查了矩形的性质直角三角形斜边上的中线以及解直角三角形,关键是利用直角三角形斜边上的中线求出的长16(3分)(2021白银)若点,在反比例函数的图象上,则(填“”或“”或“” 【分析】反比例函数的图象在一、三象限,在每个象限内,随的增大而减小,判断出的值的大小关系【解答】解:,反比例函数的图象在一、三象限,且在每个象限内随的增大而减小,点,同在第三象限,且,故答案为【点评】本题考查反比例函数的图象和性质,掌握反比例函数的增减性是解决问题的关键,17(3分)(2021白银)如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为 【分析】连接,根据圆周角定理得出为圆的直径,解直角三角形求出,根据扇形面积公式求出即可【解答】解:连接,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,即,为直径,即,(扇形的半径相等),阴影部分的面积是故答案为:【点评】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解此题的关键18(3分)(2021白银)一组按规律排列的代数式:,则第个式子是【分析】根据已知的式子可以得到每个式子的第一项中的次数是式子的序号;第二项的符号:第奇数项是正号,第偶数项是负号;第二项中的次数是序号的2倍减1,据此即可写出【解答】解:观察代数式,得到第个式子是:故答案为:【点评】本题考查了探索规律,根据所排列的代数式,总结出规律是解题的关键三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。19(4分)(2021白银)计算:【分析】根据零指数幂,负整数指数幂,特殊角的三角函数值计算即可【解答】解:原式【点评】本题考查了零指数幂,负整数指数幂,特殊角的三角函数值,牢记是解题的关键20(4分)(2021白银)先化简,再求值:,其中【分析】首先将分式的分子与分母进行分解因式进而化简,再将的值代入求出答案【解答】解:原式,当时,原式【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键21(6分)(2021白银)在阿基米德全集中的引理集中记录了古希腊数学家阿基米德提出的有关圆的一个引理如图,已知,是弦上一点,请你根据以下步骤完成这个引理的作图过程(1)尺规作图(保留作图痕迹,不写作法);作线段的垂直平分线,分别交于点,于点,连接,;以点为圆心,长为半径作弧,交于点,两点不重合),连接,(2)直接写出引理的结论:线段,的数量关系【分析】(1)根据要求作出图形即可根据要求作出图形即可(2)证明可得结论【解答】解:(1)如图,直线,线段,线段即为所求如图,点,线段,即为所求作(2)结论:理由:垂直平分线段,在和中,【点评】本题考查作图复杂作图,线段的垂直平分线的性质,全等三角形的判定和性质,圆周角定理等知识,解题的关键是熟练掌握五种基本作图,正确寻找全等三角形解决问题22(6分)(2021白银)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年年),是明代平凉韩王府延恩寺的主体建筑宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取,两处分别测得和的度数,在同一条直线上)数据收集:通过实地测量:地面上,两点的距离为,问题解决:求宝塔的高度(结果保留一位小数)参考数据:,根据上述方案及数据,请你完成求解过程【分析】设设,在中,可得出,在中, ,再由,列式计算即可得出答案【解答】解:设,在中,,在中, ,解得,答:宝塔的高度约为【点评】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键23(6分)(2021白银)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法)【分析】(1)设白球有个,根据多次摸球试验后发现,摸到红球的频率稳定在0.75左右可估计摸到红球的概率为0.75,据此利用概率公式列出关于的方程,解之即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可【解答】解:(1)通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,估计摸到红球的概率为0.75,设白球有个,根据题意,得:,解得,经检验是分式方程的解,估计箱子里白色小球的个数为1;(2)画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,两次摸出的小球颜色恰好不同的概率为【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式求事件或的概率四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。24(7分)(2021白银)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成,五个等级,并绘制了如下不完整的统计图请结合统计图,解答下列问题:等级成绩(1)本次调查一共随机抽取了 200名学生的成绩,频数分布直方图中;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在 等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?【分析】(1)由等级人数及其所占百分比可得被调查的总人数,总人数乘以等级对应百分比可得的值;(2)总人数乘以等级人数所占百分比求出其人数即可补全图形;(3)根据中位数的定义求解即可;(4)总人数乘以样本中、等级人数和所占比例即可【解答】解:(1)一共调查学生人数为,等级人数,故答案为:200,16;(2)等级人数为,补全频数分布直方图如下:(3)由于一共有200个数据,其中位数是第100、101个数据的平均数,而第100、101个数据都落在等级,所以所抽取学生成绩的中位数落在等级;故答案为:(4)估计成绩优秀的学生有(人【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答25(7分)(2021白银)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计)小刚离家的距离与他所用的时间的函数关系如图2所示(1)小刚家与学校的距离为 3000,小刚骑自行车的速度为 ;(2)求小刚从图书馆返回家的过程中,与的函数表达式;(3)小刚出发35分钟时,他离家有多远?【分析】(1)根据函数图象和题意可以求得小刚家与学校的距离为,小刚骑自行车的速度为;(2)先求出小刚从图书馆返回家的时间,进而得出总时间,再利用待定系数法即可求出与之间的函数关系式;(3)把代入(2)的结论解答即可【解答】解:(1)由题意得,小刚家与学校的距离为,小刚骑自行车的速度为:,故答案为:3000;200;(2)小刚从图书馆返回家的时间:,总时间:,设小刚从图书馆返回家的过程中,与的函数表达式为,把,代入得:,解得,;(3)小刚出发35分钟时,即当时,答:此时他离家【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用该数形结合的思想和分类讨论的数学思想解答26(8分)(2021白银)如图,内接于,是的直径的延长线上一点,过圆心作的平行线交的延长线于点(1)求证:是的切线;(2)若,求的半径及的值【分析】(1)由等腰三角形的性质与已知条件得出, ,由圆周角定理可得,进而得到,即可得出结论;(2)根据平行线分线段成比例定理得到,设,则,在中,根据勾股定理求出,即的半径为3,由平行线的性质得到,在中,可求得,即【解答】(1)证明:,是的直径,,即,是的半径,是的切线;(2)解:,,,,设,则,是直角三角形,在中,,解得,,即的半径为3,,在中,,【点评】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键27(8分)(2021白银)问题解决:如图1,在矩形中,点,分别在,边上,于点(1)求证:四边形是正方形;(2)延长到点,使得,判断的形状,并说明理由类比迁移:如图2,在菱形中,点,分别在,边上,与相交于点,求的长【分析】(1)根据矩形的性质得,由等角的余角相等可得,利用可得,由全等三角形的性质得,即可得四边形是正方形;(2)根据矩形的性质得,利用可得,由全等三角形的性质得,由已知可得,即可得是等腰三角形;(3)延长到点,使,连接,利用可得,由全等三角形的性质得,由已知可得,可得是等边三角形,则,等量代换可得【解答】(1)证明:四边形是矩形,四边形是矩形,四边形是正方形;(2)解:是等腰三角形,理由:四边形是矩形,是等腰三角形;(3)解:延长到点,使,连接,四边形是菱形,,,,,是等边三角形,【点评】本题属于四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题28(10分)(2021白银)如图,在平面直角坐标系中,抛物线与坐标轴交于,两点,直线交轴于点点为直线下方抛物线上一动点,过点作轴的垂线,垂足为,分别交直线,于点,(1)求抛物线的表达式;(2)当时,连接,求的面积;(3)是轴上一点,当四边形是矩形时,求点的坐标;在的条件下,第一象限有一动点,满足,求周长的最小值【分析】(1)利用待定系数法求解即可(2)求出点的坐标,可得结论(3)过点作于,证明,推出,由,可得,由题意直线的解析式为,设,根据,构建方程求解,可得结论因为的周长,所以要使得的周长最小,只要的值最小,因为,所以当点在上时,的值最小【解答】解:(1)抛物线过,两点,,解得,(2),轴,轴,在和中,,即,当时,,即,如图1中,过点作于,四边形是矩形,,直线的解析式为,设,由得到,,如图2中,,的周长,要使得的周长最小,只要的值最小,,当点在上时,的值最小,,的周长的最小值为【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,全等三角形的判定和性质,矩形的判定和性质,两点之间线段最短等知识,解题的关键是学会寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/26 19:22:47;用户:庞如兰老师;邮箱:13856865289;学号:24955577好好学习 天天向上

    注意事项

    本文(2021年甘肃省白银市中考数学试卷(含解析)---副本.docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开