2021-2022学年人教版初中数学七年级下册-第六章实数专题测试试卷(含答案详细解析).docx
-
资源ID:46181601
资源大小:350.52KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版初中数学七年级下册-第六章实数专题测试试卷(含答案详细解析).docx
初中数学七年级下册 第六章实数专题测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、观察下列算式:212,224,238,2416,2532,2664,27128,28256,根据上述算式中的规律,你认为2810的末位数字是()A2B4C8D62、下列说法正确的是( )A±2B27的立方根是±3C9的平方根是3D9的平方根是±33、下列说法正确的是( )A5是25的算术平方根B的平方根是±6C(6)2的算术平方根是±6D25的立方根是±54、下列四个实数中,是无理数的为( )A2BCD45、实数在哪两个连续整数之间( )A3与4B4与5C5与6D12与136、下列数中,0.373373337(相邻两个7之间的3的个数逐次加1),是无理数的有( )个A5B4C3D27、在下列实数中:无理数有( )A1个B2个C3个D4个8、估算的值是在( )之间A5和6B6和7C7和8D8和99、若,则整数a的值不可能为( )A2B3C4D510、在0,3,6.1010010001(相邻两个1之间0的个数在递增)中,无理数有()A1个B2个C3个D4个二、填空题(5小题,每小题4分,共计20分)1、若,则 的值为_2、若一个正数的两个不同的平方根为2a+1和3a11,则a_3、已知为的整数部分,则_(填“>”“<”或“=”)4、若实数a,b互为相反数,c,d互为倒数,e是的整数部分,f是的小数部分,则代数式的值是 _5、若一个正数的平方根是3x+2和5x-10,则这个数是_三、解答题(5小题,每小题10分,共计50分)1、已知(x-1)2+|y+3|+=0,求x+y2-z的立方根2、求方程中x 的值(x1)2 16 = 03、求下列各式中的值:(1)(2)4、已知 a、b互为相反数,c、d互为倒数,x 是4的平方根,求的值5、一个两位正整数m,如果m满足各数位上的数字互不相同且均不为0,那么称m为“相异数”,将m的两个数位上的数字对调得到一个新数,把放在m的后面组成第一个四位数,把m放在的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后所得的差再除以99所得的商记为例如:时,(1)计算_,_;(2)若s,t都是“相异数”,其中(且a,b,x,y为整数)规定:若满足被5除余1,且,求的最小值-参考答案-一、单选题1、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6用810÷42022,余数是2故可知,末尾数是4【详解】2n的个位数字是2,4,8,6循环,所以810÷42022,则2810的末位数字是4故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键2、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键3、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键4、C【分析】无限不循环小数是无理数,根据无理数的定义逐一判断即可.【详解】解:是有理数,是无理数,故选:C【点睛】本题考查的是无理数的定义,根据无理数的定义识别无理数是解本题的关键.5、B【分析】估算即可得到结果【详解】解:,故选:B【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则6、C【分析】根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数,找出无理数的个数【详解】解:=4,无理数有:-,0.373373337(相邻两个7之间的3的个数逐次加1),共3个故选:C【点睛】本题考查了无理数,解题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数7、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,根据定义判断即可【详解】解:无理数有,共4个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.10100100018、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故【详解】故选:C【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键9、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可【详解】解:,即,即,又,整数a可能的值为:2,3,4,整数a的值不可能为5,故选:D【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法10、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:在0,6.1010010001(相邻两个1之间一次多一个0)中,无理数有,+6.1010010001(相邻两个1之间一次多一个0)故选C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数二、填空题1、【解析】【分析】根据算术平方根的定义可得,进而代入根据立方根的定义即可求解【详解】解:即故答案为:【点睛】本题考查了算术平方根和立方根的定义,求得的值是解题的关键平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数), 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)2、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可【详解】解:一个正数的两个不同的平方根分别是2a+1和3a11,解得故答案为: 2【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程3、【解析】【分析】根据,得到a为7,代入计算比较大小即可【详解】解:为的整数部分,且,a7,2,故答案为:【点睛】本题考查了无理数的估值,掌握无理数估值的方法是解题的关键4、4-#【解析】【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可【详解】解:实数a、b互为相反数,a+b=0,c、d互为倒数,cd=1,34,的整数部分为3,e=3,23,的小数部分为-2,即f=-2,=0+1-3+-2=故答案为:4-【点睛】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键5、25【解析】【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数【详解】解:根据题意得:,解得:,即,则这个数为25,故答案为:25【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键三、解答题1、2【解析】【分析】先根据偶次方的非负性、绝对值的非负性、算术平方根的非负性可求出的值,再代入计算的值,然后根据立方根的定义即可得【详解】解:,解得,将代入得:,解得,则,所以的立方根是2【点睛】本题考查了算术平方根与立方根、绝对值、一元一次方程的应用等知识点,熟练掌握偶次方的非负性、绝对值的非负性和算术平方根的非负性是解题关键2、或【解析】【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)【详解】解:(x1)2 16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键3、(1)或;(2)【解析】【分析】(1)根据求一个数的平方根解方程即可;(2)根据求一个数的立方根解方程即可;【详解】解:(1)即解得或(2)即解得【点睛】本题考查了根据平方根和立方根解方程,掌握求一个数的平方根和立方根是解题的关键4、或【解析】【分析】根据相反数、倒数的定义,可得出a+b=0,cd=1,解出x的值后代入即可得出答案【详解】解:因为,互为相反数,所以,因为、互为倒数,所以,因为是4的平方根,所以,所以:或【点睛】本题考查了代数求值,根据倒数、相反数的定义得出a+b=0,cd=1,是解题关键5、(1)36,-45;(2)【解析】【分析】(1)根据题意可得,;(2)根据s,t都是“相异数”,其中,可得,再由,可以推出;根据满足被5除余1,得到满足被5除余1,即可推出,从而得到,即,由,可得当最大,最小时,最大,即最大,由此分别求出的最大值和的最小值,即可得到答案【详解】解:(1)当时,;当时,;故答案为:36,-45;(2)s,t都是“相异数”,其中,同理,满足被5除余1,满足被5除余1,当时,不满足被5除余1,当时,不满足被5除余1,当时,不满足被5除余1,当时,满足被5除余1,当时,不满足被5除余1,当时,不满足被5除余1,即,当时,当时,当时,当最大,最小时,最大,即最大,当,当,当,【点睛】本题主要考查了新定义下的实数运算,解题的关键在于能够正确理解题意进行求解