2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(名师精选).docx
-
资源ID:46181911
资源大小:649.08KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(名师精选).docx
八年级数学下册第三章图形的平移与旋转章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( )ABCD2、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对3、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、下列标志是中心对称图形,但不是轴对称图形的是( )ABCD5、已知A(3,2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则xy的值是( )A1B0C1D26、下列图案中,是中心对称图形的是( )ABCD7、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)8、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD9、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D610、下列产品logo图片中,既是轴对称图形又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,已知点与点关于原点对称,则_,_2、在平面直角坐标系中,已知点A(a,3)与点B(2,b)关于原点对称,则ba_3、如图所示,在ABC中,B40°,将ABC绕点A逆时针旋转至ADE的位置,则ADE_4、如图,已知三角形ABC的面积为12,将三角形ABC沿BC平移到三角形ABC,使B和C重合,连接AC交AC于D,D是AC的中点,则三角形CDC的面积为_5、在平面直角坐标系中,点A(3,1)绕原点逆时针旋转180°得到的点A'的坐标是 _三、解答题(5小题,每小题10分,共计50分)1、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,B45°,C30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角AOA'(0180°)(1)在旋转过程中,当为 度时,A'B'OC,当为 度时,A'B'CD;(2)如图2,将图1中的OAB以点O为旋转中心旋转到OA'B'的位置,求当为多少度时,OB'平分COD;拓展应用:(3)当90°120°时,连接A'D,利用图3探究B'A'D+B'OC+A'DC值的大小变化情况,并说明理由2、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由3、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130°,n2,求证:OD1的长度;(2)若DAD190°,m,n满足m+n4,p2+q225,求p+q的值4、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)5、已知点P(3a15,2a)(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标-参考答案-一、单选题1、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心2、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键3、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键4、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合根据轴对称图形和中心对称图形的概念对选项进行一一分析即可得到答案5、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y【详解】A(3,2),B(1,0)平移后的对应点C(5,x),D(y,0),平移方法为向右平移2个单位,x2,y3,x+y1,故选:C【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加6、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合7、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解】四边形ABCD为矩形AB=CD=,DOC=60°在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60°得到如图所示,过C作y轴平行线交x轴于点M其中DOC=DOC=60°,OMC=90°,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键8、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键9、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键10、C【分析】根据轴对称图形、中心对称图形的定义解题【详解】解:A.是轴对称图形,不是中心对称图形,故A不符合题意;B.是中心对称图形,不是轴对称图形,故B不符合题意;C. 既是轴对称图形又是中心对称图形,故C符合题意;D. 是轴对称图形,不是中心对称图形,故D不符合题意,故选:C【点睛】本题考查轴对称图形与中心对称图形的识别,轴对称图形的关键是找对称轴,图形两部分沿着对称轴折叠可重合;中心对称图形是要寻找对称中心,旋转180°后能与原图重合二、填空题1、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案【详解】解:点和点关于原点对称,故答案为:2;2【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键2、【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点A(a,3)与点B(2,b)关于原点对称,a=-2,b=3,ba= 3-2=故答案为:【点睛】本题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键3、40°40度【分析】根据ABC绕点A逆时针旋转至ADE,得到ABCADE,即可得到ADEB40°,问题得解【详解】解:ABC绕点A逆时针旋转至ADE,ABCADE,ADEB40°故答案为:40°【点睛】本题考查了图形旋转的性质,熟知旋转前后的两个图形全等是解题关键4、6【分析】由平移的性质可得,则,同理可得【详解】解:由平移的性质可得,(等底同高),D是的中点,故答案为:6【点睛】本题主要考查了平移的性质,三角形面积,解题的关键在于能够熟练掌握平移的性质5、(3,1)【分析】由条件可知A点和A点关于原点对称,可求得答案【详解】解:将OA绕原点O逆时针旋转180°得到OA,A点和A点关于原点对称,A(3,1),A(3,1),故答案为:(3,1)【点睛】本题主要考查旋转的定义,由条件求得A和A关于原点对称是解题的关键三、解答题1、(1)30,90;(2)105°;(3)不变,理由见解析【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得AOBA'OB'45°,由角的数量关系可求解;(3)由可分别表示B'A'D,B'OC,A'DC再求和即可【详解】解:(1)当A'B'OC时,AOC+A180°,A90°,AOC90°,AOA180°90°60°30°,即30°;当A'B'CD时,则OACD,AOAODC90°,即90°;故答案为:30;90(2)OAB以O为中心顺时针旋转得到OAB,AOBA'OB'45°,COD60°,OB平分COD,DOB'30°,AOA'180°DOBA'OB180°30°45°105°,即当为105°时,OB'平分COD;(3)不变,理由如下:AOA,BOD180°45°135°,BOC60°(135°)75°,设ADC,ADO90°,BOD+ADOB'A'D+B,即135°+90°B'A'D+45°,解得B'A'D180°,B'A'D+B'OC+A'DC180°+75°+105°【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键2、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数3、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,可求的长;(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,点G坐标为,得,由知的值,从而得到的值【详解】解:(1)DAD130°且D1、C1、O三点在一条直线上如图所示,连接,过点向作垂线交点为(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为p+q=-7或-1【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识解题的关键与难点是找出线段之间的关系4、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键5、(1)或;(2)或;(3)或【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案【详解】解:(1)点到轴的距离是1,且,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,解得,点的横、纵坐标都是整数,或,当时,则点的坐标为,当时,则点的坐标为,综上,点的坐标为或【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键