2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专题测评试卷(精选含答案).docx
-
资源ID:46182146
资源大小:1.07MB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专题测评试卷(精选含答案).docx
九年级数学下册第二十三章 图形的变换专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)2、如图,与位似,位似中心为点,的周长为9,则周长为( )AB6C4D3、下列图形中,是中心对称图形的是( )ABCD4、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) A40°B50°C70°D1005、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)6、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个7、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD8、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形9、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD10、如图,直角三角形纸片ABC中,ACB=90°,A=50°,将其沿边AB上的中线CE折叠,使点A落在点处,则EB的度数为( )A10°B15°C20°D40°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,RtABC中,ACB=90°,AC=BC=2,点P是AB上一动点,连接CP,将线段CP绕点C顺时针旋转90°得到线段CQ,连接PQ,AQ,则PAQ面积的最大值为_2、若点M(,a)关于y轴的对称点是点N(b,),则=_3、若点与点关于原点对称,则的值为_4、如图,Rt中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_5、如图,在平面直角坐标系中,点在第一象限内,点在轴正半轴上,是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,则点的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由2、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标3、点P为等边的边AB延长线上的动点,点B关于直线PC的对称点为D,连接AD(1)如图1,若,依题意补全图形,并直接写出线段AD的长度;(2)如图2,线段AD交PC于点E,设,求的度数;求证:4、如图,在正方形中,射线与边交于点,将射线绕点顺时针旋转,与的延长线交于点,连接(1)求证:;(2)若,直接写出的面积5、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 -参考答案-一、单选题1、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P'的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键2、B【分析】根据与位似,得出,根据相似三角形性质得出,再证得出即可【详解】解:与位似,即故选择B【点睛】本题考查位似三角形的性质,相似三角形判定与性质,掌握位似三角形的性质,相似三角形判定与性质是解题关键3、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40°后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键5、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律6、C【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关键7、A【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件8、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键9、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合10、C【分析】由折叠的性质和直角三角形斜边的中线等于斜边的一半,则,然后结合三角形的内角和,等腰三角形的性质,即可求出答案【详解】解:ABC是直角三角形,CE是中线,有折叠的性质,则,A=50°,ACE=50°,;故选:C【点睛】本题考查了折叠的性质,三角形的内角和定理,直角三角形的性质,三角形的外角性质,解题的关键是掌握所学的知识,正确的求出角的度数二、填空题1、1【分析】先证明BCP=ACP,然后利用SAS证明BPCAQC得到B=CAQ,BP=AQ,从而推出PAQ =90°,再利用勾股定理求出,设BP=AQ=x,则,则,最后根据二次函数的性质求解即可【详解】解:如图,将线段CP绕点C顺时针旋转90°得到线段CQ,PCQ=90°,CP=CQ,ACP+ACQ=90°,又ACB=90°,BCP+ACP=90°,BCP=ACP,AC=BC,BPCAQC(SAS),B=CAQ,BP=AQ,BC=AC=2,B=CAQ=BAC=45°,PAQ=BAC+CAQ=90°,在RtABC中,由勾股定理AB=,设BP=AQ=x,则,函数开口向下,函数有最大值,当时,故答案为:1【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理,全等三角形的性质与判定,二次函数的性质等知识点,掌握等腰直角三角形的性质、旋转的性质、勾股定理,二次函数的性质等知识点是解题关键2、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案【详解】解:点M(,a)关于y轴的对称点是点N(b,),b=-,a=,则=1故答案为:1【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键3、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答【详解】解:由点与点关于原点对称,可得n1,故答案为:4【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数4、【分析】根据折叠的性质,然后结合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键是掌握折叠的性质,正确得到边相等、角相等5、【分析】根据位似变换的性质计算即可【详解】解:是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,点的坐标为,即点的坐标为,故答案为:【点睛】本题考查位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,则位似图形对应点的坐标的比等于k或-k三、解答题1、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数2、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90°可得,即可;【详解】(1),关于原点对称的点,作图如下;(2)连接OC,OB,根据旋转的90°可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键3、(1)(2);证明见解析【分析】(1)连接DP,BD,可证明BPD为等边三角形,再结合等腰三角形的性质和三角形外角的性质证明BAD=BDA=30°,可得ADP=90°,利用勾股定理即可得出结论;(2)连接BD与CP交于F,连接DC,利用等腰三角形的性质和三角形内角和定理求得和,从而可求得,根据轴对称图形对应点连接线段被对称轴垂直平分、三角形内角和定理、对顶角相等可求得的度数;连接BE,在AE上截取GE=CE,可证明GCE为等边三角形和ACGBCE,结合等量代换即可证明结论【详解】解:(1)补全图形如下,连接DP,BD,ABC为等边三角形,ABC=60°,AB=BC=2,又BCP+BPC=ABC=60°,BC=BP,BCP=BPC=30°,点B关于直线PC的对称点为D,BP=DP,BPC=DPC=30°,BPD=60°,BPD为等边三角形,DBP=60°,DP=BD=BP=AB=2,BAD=BDA,又BAD+BDA=DBP=60°,BAD=BDA=30°,ADP=90°,(2)如下图所示,连接BD与CP交于F,连接DC,由(1)可知ACB=60°,AC=BC,点B关于直线PC的对称点为D,BC=CD=AC,CFD=90°,,,如下图,连接BE,在AE上截取GE=CE,由得,GE=CE,GCE为等边三角形,GC=CE,GCE=60°,由(1)得ACB=60°,AC=BC,ACG=BCE=60°-BCG,在ACG和BCE中,ACGBCE(SAS)AG=BE,点B关于直线PC的对称点为D,BE=DE,【点睛】本题考查轴对称的性质,全等三角形的性质和判定,等边三角形的性质和判定,三角形外角和内角的性质,等腰三角形的性质,勾股定理等(1)中能正确构造直角三角形并证明是解题关键;(2)中掌握等边对等角定理,并能利用三角形内角和定理表示等腰三角形的底角是解题关键;中掌握割补法是解题关键4、(1)见解析;(2)8【分析】(1)根据SAS证明即可得到结论;(2)根据直角三角形的性质求出AE=4,再根据三角形面积公式计算即可【详解】解:(1)四边形ABCD是正方形AD=AB=BC=CD, 在和中, (2)由(1)得, 是等腰直角三角形,在RtADE中,AE=2DE=4AF=4【点睛】此题考查了正方形的性质、全等三角形的判定与性质、旋转变换的性质、三角形的面积以及直角三角形的性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键5、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置