2021-2022学年北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx
-
资源ID:46212243
资源大小:426.56KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版八年级数学下册第六章平行四边形专题测试试卷(精选).docx
北师大版八年级数学下册第六章平行四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OEAC交AD于E,则DCE的周长为( )A4B6C8D102、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm3、n 边形的每个外角都为 15°,则边数 n 为( )A20B22C24D264、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形5、如图,A+B+C+D+E+F的度数为()A180°B360°C540°D不能确定6、如图,一张含有80°的三角形纸片,剪去这个80°角后,得到一个四边形,则1+2的度数是( )A200°B240°C260°D300°7、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对8、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则APN的度数是( )A120°B118°C110°D108°9、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或1710、如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系正确的是( )AB且CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在中,若沿图中虚线剪去,则_2、如图,在平行四边形ABCD中,E、F分别在CD和BC的延长线上,则_3、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离若量得DE=15m,则A、B之间的距离为_m4、一个多边形,每个外角都是,则这个多边形是_边形5、一个多边形的每一个外角都是72°,则这个多边形是正_边形三、解答题(5小题,每小题10分,共计50分)1、在中,将ABO绕点O逆时针方向旋转90°得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积?2、四边形ABCD中,的平分线与边BC交于点E;的平分线交直线AE于点O(1)若点O在四边形ABCD的内部如图1,若,则_如图2,试探索、之间的数量关系,并将你的探索过程写下来(2)如图3,若点O在四边形ABCD的外部,请探究、之间的数量关系,并说明理由3、如果一个正多边形的内角和是900°,则这个正多边形是正几边形?它的对角线的总条数是多少?4、在RtABC中,BAC90°,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG(特例感知)(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;(猜想论证)(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由(拓展应用)(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积5、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标-参考答案-一、单选题1、C【分析】先证明AEEC,再求解AD+DC8,再利用三角形的周长公式进行计算即可.【详解】解:平行四边形ABCD,ADBC,ABCD,OAOC,EOAC,AEEC,AB+BC+CD+AD16,AD+DC8,DCE的周长是:CD+DE+CEAE+DE+CDAD+CD8,故选:C【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AEEC是解本题关键.2、C【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键3、C【分析】根据多边形的外角和等于360度得到15°n360°,然后解方程即可【详解】解:n边形的每个外角都为15°,15°n360°,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键4、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键5、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键6、C【分析】三角形纸片中,剪去其中一个80°的角后变成四边形,则根据多边形的内角和等于360度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角的度数为180°-80°=100°,则根据四边形的内角和定理得:1+2=360°-100°=260°故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°7、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质8、D【分析】由五边形的性质得出AB=BC,ABM=C,证明ABMBCN,得出BAM=CBN,由BAM+ABP=APN,即可得出APN=ABC,即可得出结果【详解】解:五边形ABCDE为正五边形,AB=BC,ABM=C,在ABM和BCN中,ABMBCN(SAS),BAM=CBN,BAM+ABP=APN,CBN+ABP=APN=ABC= APN的度数为108°;故选:D【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键9、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键10、B【分析】证明ADEADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可【详解】解:AD平分BAC,BAD=CAD,DEAB,DFAC,DE= DF,在ADE和ADF中,ADEADF(HL),AE= AF,AD是线段EF的垂直平分线,ADEF且EG=FG,故选项B正确;DEAB,DFAC,AED=AFD=90°,BAC+EDF=360°-AED-AFD =180°,BAC不一定等于90°,EDF也不一定等于90°,故选项C错误;EDF90°,而AFD=90°,EDF+AFD180°,DE与AC不一定平行,故选项D错误;AED=90°,DE与AE不一定相等,AG与DG也不一定相等,故选项A错误;故选:B【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键二、填空题1、270°度【分析】利用了四边形内角和为360°和直角三角形的性质求解【详解】解:四边形的内角和为360°,直角三角形中两个锐角和为90°,12360°(AB)360°90°270°故答案为:270°【点睛】本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力2、8【分析】证明四边形ABDE是平行四边形,得到DE=CD, 过点E作EHBF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF【详解】解:四边形ABCD是平行四边形,AB=CD, ,四边形ABDE是平行四边形,DE=CD, 过点E作EHBF于H,ECH=,CH=EH, CH=EH=4,EHF=90°,EF=2EH=8,故答案为:8【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键3、30【分析】根据三角形中位线的性质解答即可【详解】解:点D,E分别是AC,BC的中点,DE是ABC的中位线,AB=2DE=30m故填30【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键4、六6【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数【详解】一个多边形的每个外角都是60°,n=360°÷60°=6,故答案为:六【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键5、五【分析】根据多边形的外角和等于360°进行解答即可得【详解】解:,故答案为:五【点睛】本题考查了多边形的外角和,解题的关键是熟记多边形的外角和等于360°三、解答题1、(1)6,;(2)见解析;(3)36【分析】(1)根据旋转的性质得出,由此可得答案;(2)根据题意可得,再根据平行四边形的判定即可得证;(3)利用平行四边形的面积公式求解【详解】解:(1),是等腰直角三角形,将绕点O沿逆时针方向旋转得到, ,故答案为:6,;(2)将绕点O沿逆时针方向旋转得到,四边形是平行四边形(3)四边形OAA1B1的面积=OAA1O=6×6=36四边形OAA1B1的面积是36【点睛】本题考查了旋转的性质以及平行四边形的判定,熟练掌握旋转的性质是解决本题的关键,注意:旋转前后的两个图形全等2、(1)120°;(2);(3)【分析】(1)根据平行线的性质和角平分线的定义可求BAE,CDO,再根据三角形外角的性质可求AEC,再根据四边形内角和等于360°可求DOE的度数;根据三角形外角的性质和角平分线的定义可得DOE和BAD、ADC的关系,再根据四边形内角和等于360°可求B、C、DOE之间的数量关系;(2)根据四边形和三角形的内角和得到BAD+ADC=360°-B-C,EAD+ADO=180°-DOE,根据角平分线的定义得到BAD=2EAD,ADC=2ADO,于是得到结论【详解】解:(1)又B=50°,C=70°BAD=130°,ADC=110°AE、DO分别平分BAD、ADCBAE=65°,ODC=55°AEC=115°DOE=360°-115°-70°-55°=120°故答案为:120°,理由如下:平分平分 即(2),理由如下:平分平分 即:.【点睛】本题考查多边形内角与外角平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°,这是解题的重点3、这个正多边形是正七边形,总对角线的条数为14条【分析】根据多边形的内角和公式求解即可,从一个n边形的某个顶点出发,可以引条对角线,则总对角线的条数为条【详解】解:设这个多边形为边形,根据多边形内角和公式可得,解得总对角线的条数为(条)这个正多边形是正七边形,总对角线的条数为14条【点睛】本题考查了多边形的内角和公式,对角线的条数,牢记多边形的内角和公式是解题的关键4、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然成立,理由见解析;(3)BDF的面积为或【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90°,ABAC,点D是BC的中点,ADBC,ADBDCD,ABCACB45°,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90°得到AE,BACDAE90°,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45°,DCE90°,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AMBC于M,连接FG,BAC90°,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45°,ADAE,DAE90°,点F是DE中点,EAFCAM45°,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60°,CAE15°BAD,ADMABCBAD30°,DMAM,BDDMBM,由(2)的结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图32中,作AMBC于M,连接FG,BAC90°,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45°,ADAE,DAE90°,点F是DE中点,EAFCAM45°,AFFDEF,DAF45°,AFC是等边三角形,AFACFC,FACAFCACF60°,CADCAFDAF15°,ADMACBCAD30°,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,BDF的面积综上所述:BDF的面积为或【点睛】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键5、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解