2022年最新人教版初中数学七年级下册-第六章实数专题攻克试题.docx
-
资源ID:46219773
资源大小:237.23KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版初中数学七年级下册-第六章实数专题攻克试题.docx
初中数学七年级下册 第六章实数专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、在实数,1.12112111211112(每两 个2之间依次多一个1)中,无理数有( )个A2B3C4D52、,3,的大小顺序是()ABCD3、下列命题是假命题的是( )A无理数都是无限小数B的立方根是它本身C三角形内角和都是180°D内错角相等4、下列各数中,是无理数的是 ( )AB-2C0D5、下列四个数中,最小的数是( )A3BC0D6、下列各式正确的是( )ABCD7、在实数中,无理数的个数是( )A1B2C3D48、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近19、化简计算的结果是( )A12B4C4D1210、在实数,0.1010010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个二、填空题(5小题,每小题4分,共计20分)1、的算术平方根是 _;64的立方根是 _2、已知a29,则a_3、若和是一个正数的平方根;则这个正数是_4、若m、n是两个连续的整数,且,则_5、一个正方形的面积为5,则它的边长为_三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:,的整数部分为3,小数部分为请你观察上述的规律后试解下面的问题:如果的整数部分为,的小数部分为,求的值2、已知(x-1)2+|y+3|+=0,求x+y2-z的立方根3、在一个长,宽,高分别为9cm,8cm,3cm的长方体容器中装满水,然后将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长4、已知一个正数的平方根是a+6与2a9,(1)求a的值;(2)求关于x的方程的解5、求下列各式中的的值:(1)2x2-18=0;(2)-参考答案-一、单选题1、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数2、B【分析】根据实数的大小比较法则即可得【详解】解:,则,故选:B【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键3、D【分析】根据无理数的定义、立方根、三角形内角和定理、平行线的性质,分别进行判断,即可得到答案【详解】解:A、无理数都是无限小数;原命题是真命题,故不符合题意;B、的立方根是它本身;原命题是真命题,故不符合题意;C、三角形内角和都是180°;原命题是真命题,故不符合题意;D、两直线平行,内错角相等;原命题是假命题,故符合题意;故选:D【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理4、D【分析】根据无限不循环小数叫无理数,即可选择【详解】解:A:,是有理数,不符合题意;B:-2是整数,属于有理数,不符合题意;C:0是整数,属于有理数,不符合题意;D:是无限不循环小数,属于无理数,符合题意故选:D【点睛】本题考查了无理数,掌握无理数是无限不循环小数,有理数是有限小数或无限循环小数是解答本题的关键5、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可【详解】解:,最小的数是,故选D【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小6、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键7、B【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:=2,=2,,无理数只有,共2个故选:B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001,等有这样规律的数8、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键9、B【分析】根据算术平方根和立方根的计算法则进行求解即可【详解】解:,故选B【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法10、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数二、填空题1、 4【解析】【分析】根据立方根、算术平方根的概念求解【详解】解:5,5的算术平方根是,的算术平方根是;64的立方根是4故答案为:,4【点睛】本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键2、【解析】【分析】根据平方根的性质:x =a,得x=± ,即可解答【详解】解:,a=±3,故答案为【点睛】此题考查平方根,解题关键在于掌握运算法则3、64【解析】【分析】根据非负数的平方根的性质得到方程,解之得到a值,从而解决此题【详解】解:由题意得:2a-2+(-a-3)=0a=5,2a-2=8,这个数为64,故答案为:64【点睛】本题主要考查非负数的平方根的性质,熟练掌握非负数的平方根的性质是解决本题的关键4、11【解析】【分析】根据无理数的估算方法求出、的值,由此即可得【详解】解:,5、6是两个连续的整数,且,故答案为:11【点睛】本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题关键5、【解析】【分析】根据正方形面积根式求出边长,即可得出答案【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根三、解答题1、a+b的值为25+【解析】【分析】由928.26,可得其整数部分a=28,由272864,可求得的小数部分,继而可得a+b的值【详解】解:928.26,a=28,272864,34,b=-3,a+b=28+-3=25+,a+b的值为25+【点睛】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键2、2【解析】【分析】先根据偶次方的非负性、绝对值的非负性、算术平方根的非负性可求出的值,再代入计算的值,然后根据立方根的定义即可得【详解】解:,解得,将代入得:,解得,则,所以的立方根是2【点睛】本题考查了算术平方根与立方根、绝对值、一元一次方程的应用等知识点,熟练掌握偶次方的非负性、绝对值的非负性和算术平方根的非负性是解题关键3、6cm【解析】【分析】先根据长方体体积公式求出长方体的容积,再由正方体的容积与长方体的容积相同进行求解即可【详解】解:由题意得:长方体的容积为 将容器中的水全部倒入一个正方体容器中,恰好倒满,长方体和正方体的容积相等,正方体的棱长为【点睛】本题主要考查了立方根,解题的关键在于能够熟练掌握求立方根的方法4、(1);(2)【解析】【分析】(1)根据一个正数有两个平方根,这两个平方根互为相反数解答即可,(2)根据(1)中求出的的值,直接解方程即可【详解】解:(1)由题意得,解得,;(2)由(1)得,【点睛】本题考查的是平方根的概念和应用,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,5、(1)x=;(2)x=5【解析】【分析】(1)根据求平方根的方法求解方程即可;(2)根据求立方根的方法求解方程即可【详解】解:(1),;(2),【点睛】本题主要考查了根据求平方根和立方根的方法解方程,解题的关键在于能够熟练掌握求平方根和立方根的方法