2021-2022学年人教版九年级数学下册第二十六章《反比例函》同步测试练习题(无超纲).docx
-
资源ID:46225158
资源大小:796.21KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版九年级数学下册第二十六章《反比例函》同步测试练习题(无超纲).docx
人教版九年级数学下册第二十六章反比例函同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数与反比例函数的图象大致是( )ABCD2、以下在反比例函数图像上的点是( )A(1,2)B(2,1)C(1,2)D(2,1)3、已知函数是反比例函数,则的值为( )A1B1C±1D±24、如图,反比例函数和正比例函数y2k2x的图象交于A(1,3)、B(1,3)两点,则满足不等式k2x的解集是()A1x0B1x1Cx1或0x1D1x0或0x5、如图,直线与反比例函数的图像交于A,B两点,则下列结论错误的是( )AB当A,B两点重合时,C当时,D不存在这样的k使得是等边三角形6、如图,是反比例函数的图象上一点,过点作轴于点,点在轴上,且,则的值为( )A4B4C2D27、在同一直角坐标系中,一次函数与反比例函数(k0)的图象大致是( )ABCD8、对于反比例函数,下列说法不正确的是( )A图象分布在二、四象限内B图象经过点C当时,随的增大而增大D若点,都在函数的图象上,且时,则9、在平面直角坐标系中,点,分别在三个不同的象限,若反比例函数的图像经过其中两点,则m的值为( )A2BC2或3D或10、点A(1,y1),点B(2,y2),在反比例函数的图象上,则( )Ay1 y2By1 y2Cy1 y2D不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A在x轴上,点C在反比例函数y的图象上,直线AC交y轴于点D,连接OC,以OA,OC为邻边作OABC,连接OB交AC于点E,若,BDE的面积是10,则k的值为 _2、若点在反比例函数的图象上,则当函数值时,自变量x的取值范围是_3、如图,在反比例函数y(x0)的图象上有点P1,P2,P3,P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则阴影部分的面积S1+S2+S3+S4_4、点在反比例函数图象上,则_(填“”或“”号)5、若点、都在反比例函数的图象上,则的值是_三、解答题(5小题,每小题10分,共计50分)1、探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y1性质及其应用的部分过程,请按要求完成下列各小题x9876543210123y 2 4 a 4 2 b (1)写出函数关系式中k及表格中a,b的值:k ,a ,b ;(2)在给出的图中补全该函数的大致图象,并根据图象写出该函数的一条性质: ;(3)已知函数y2的图象如图所示,结合你所画的函数图象,直接写出不等式y1y2的解集: (近似值保留一位小数,误差不超过0.2)2、如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,反比例函数在第一象限内的图象经过点A(6,8),与BC交于点F(1)求反比例的解析式;(2)求的面积3、如图,点P是反比例函数图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A,B两点,交反比例函数(且)的图象于E,F两点,连接(1)四边形的面积 (用含的式子表示);(2)设P点坐标为点E的坐标是( , ),点F的坐标是( , )(用含的式子表示);若的面积为,求反比例函数的解析式4、如图,一次函数y1kx+b(k0)与反比例函数y2(m0)的图象交于点A(1,2)和B(2,a),与y轴交于点M(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当AMN的面积为3时,求点N的坐标;(3)求不等式kx+b0的解集(请直接写出答案)5、如图,已知反比例函数y的图象与直线yaxb相交于点A(m,m9),B(1,m)(1)求出反比例函数y和直线yaxb的解析式;(2)在x轴上有一点P使得PAB的面积为18,求出点P的坐标-参考答案-一、单选题1、A【分析】根据与两种情况,先确定抛物线开口方向与顶点,再结合反比例函数图像所在象限即可得出结论【详解】解: 当时,抛物线开口向上,与y轴交于负半轴,双曲线位于二、四象限,故A图象正确,B图象二次函数顶点与反比例函数所在象限错误;当时,抛物线开口向下,与y轴交于正半轴,双曲线位于一、三象限,故C答案中抛物线顶底位置不正确,D答案中反比例函数图象所在象限不正确;故选:A【点睛】本题考查二次函数图像与反比例函数图像的识别,掌握分类讨论思想,根据a的值,得出二次函数与反比例函数性质,从中找出满足条件的函数图像是解题关键2、B【分析】根据函数,可得,只要把点的坐标代入,代数式的值为2即可【详解】解:函数,故选项A不在反比例函数图像上;,故选项B在反比例函数图像上;,故选项C不在反比例函数图像上;,故选项D不在反比例函数图像上;故选B【点睛】本题考查反比例函数图象上点的坐标特征掌握验证点在反比例函数图像上,把点的坐标代入代数式xy中代数式的值为2是解题关键3、A【分析】根据反比例函数的定义,反比例函数的一般式是y= (k0),即可得到关于n的方程,解方程即可求出n【详解】解:函数是反比例函数,n+10且n221,n1,故答案选A【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般式y= (k0),特别注意不要忽略k0这个条件4、C【分析】所求不等式的解集即为反比例函数值大于一次函数值时的范围,根据一次函数与反比例函数的交点坐标,即可确定出的范围【详解】解:根据反比例函数和正比例函数的图象交于、两点,利用图象:得:时的取值范围是:或故选:C【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是利用了数形结合的思想求解5、D【分析】先联立联立得到,设A点坐标为(,),B点坐标为(,),然后分别求出OA,OB,即可判断A;根据A、B重合,则方程只有一个实数根,即,由此即可判断B;把代入中即可判断C;若AOB是等边三角形,则OA=AB,然后求出AB的长,令AB=OA,求出k的值,即可判断D【详解】解:联立得到,设A点坐标为(,),B点坐标为(,),A、B是直线与反比例函数的两个交点,故A选项不符合题意;A、B重合,则方程只有一个实数根,解得或(舍去),故B选项不符合题意;当时,故C选项不符合题意;若AOB是等边三角形,则OA=AB,解得或(舍去),存在,使得AOB是等边三角形,故D选项符合题意;故选D【点睛】本题主要考查了反比例函数与一次函数综合,两点距离公式,等边三角形的性质,一元二次方程根于系数的关系,一元二次方程根的判别式等等,解题的关键在于能够熟练掌握相关知识进行求解6、B【分析】连接AO,根据k的几何意义求解即可;【详解】连接AO,轴,函数图象在第二象限,;故选B【点睛】本题主要考查了反比例函数k的几何意义,准确计算是解题的关键7、A【分析】由于本题不确定k的符号,可以根据一次函数经过的象限判断出k的符号,然后确定反比例函数经过的象限,然后与各选择项比较,从而确定答案【详解】解:A、一次函数y=kx-k 经过一、二、四象限,k0,则反比例函数经过二、四象限,故此选项符合题意;B、一次函数y=kx-k 经过一、三、四象限,k0,则反比例函数经过一、三象限,故此选项不符合题意;C、一次函数y=kx-k 经过一、二、四象限,k0,则反比例函数经过二、四象限,故此选项不符合题意;D、一次函数解析式为y=kx-k ,一次函数图像不可能经过第一、二、三象限,故此选项不符合题意;故选A【点睛】本题考查了反比例函数、一次函数的图象灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键8、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】解:、,它的图象在第二、四象限,故本选项正确,不符合题意;、时,点在它的图象上,故本选项正确,不符合题意;、,当时,随的增大而增大,故本选项正确,不符合题意;、,在每一个象限内,随的增大而增大,当或 ,则,故本选项错误,符合题意,故选:D【点评】本题考查了反比例函数的性质,解题的关键是掌握反比例函数的图象是双曲线;当,双曲线的两支分别位于第一、第三象限,在每一象限内随的增大而减小;当,双曲线的两支分别位于第二、第四象限,在每一象限内随的增大而增大9、B【分析】利用点过反比例函数图象,将点坐标代入求出反比例解析式,再求出m即可【详解】解:根据反比例函数图像性质,若k>0,则反比例函数图象过第一、三象限;若k<0,则反比例函数图象过第二、四象限若点A(1,4)在反比例函数图象上,则,解得k=4,反比例函数图象过第一、三象限故点C需在第三象限,与点C横坐标为2矛盾,若点B(-2,3)在反比例函数图象上,则,解得k=-6,反比例函数图象过第二、四象限故点C需在第四象限,将点C(2,m)代入反比例函数解析式得,符合题意,综上,m的值为-3故选B【点睛】本题考查了反比例函数图像性质,能熟练掌握反比例函数k值影响图象所在象限是解题的关键10、B【分析】利用反比例函数的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,利用21得出y1y2即可【详解】解:反比例函数的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,而A(1,y1),B(2,y2)都在第一象限,在第一象限内,y随x的增大而减小,21,y1y2,故选:B【点睛】本题主要考查了反比例函数的性质,当k>0时,图象分布在一、三象限,在每个单独的象限内,y随x的增大而减小,当k<0时,图象分布在二、四象限,在每个单独的象限内,y随x的增大而增大,由x的值的变化得出y的值的变化情况;也可以把x的值分别代入到关系式中求出y1和y2的值,然后再做比较即可二、填空题1、【解析】【分析】设BC与y轴交于F点,设E点坐标为(a,b),根据平行四边形的性质推出B点和C点坐标,再根据线段比例关系推出面积比例关系,以及平行四边形内各部分三角形的面积,最终得出ab的值,即可根据反比例函数图象上点坐标的特征求解即可【详解】解:如图,设BC与y轴交于F点,设E点坐标为(a,b),四边形OABC为平行四边形,对角线OB与AC于点E,B点坐标为(2a,2b),AE=CE,由平行四边形的性质可知:,C点坐标为(,2b),E(a,b)为AC的中点,A点坐标为(,0),解得:,点C在反比函数图象上,故答案为:【点睛】本题考查反比例函数与四边形综合,理解平行四边形的基本性质,掌握反比例函数图象上点坐标的特征是解题关键2、或【解析】【分析】先把点A(m,-3)代入解析式得A(-2,-3),再根据反比例函数图像的性质即可求出函数值y3时自变量的取值.【详解】解:把点A(m,-3)代入y中得:,点A的坐标为(-2,-3),60,反比例函数图像经过一、三象限,且在每个象限内,y随x增大而增大,当y-3时,自变量的取值范围为:或,故答案为:或【点睛】此题主要考查反比例函数的图像的性质,反,解题的关键在于能够利用数形结合的思想求解3、16【解析】【分析】由题意易知点P1的坐标为(2,10),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4S矩形ABCP1,最后问题可求解【详解】解:当x2时,y10,点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x10代入反比例解析式得:y2,P1CAB1028,则S1+S2+S3+S4S矩形ABCP12×816,故答案为:16【点睛】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的几何意义是解题的关键4、>【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的大小进行解答即可【详解】解: ,反比例函数的图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小5>3>0,在第一象限,故答案为:>【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键5、#【解析】【分析】将点的坐标都代入反比例函数的解析式即可得【详解】解:点、都在反比例函数的图象上,解得,故答案为:【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键三、解答题1、(1),;(2),随增大而减小;,取得最小值;,随增大而增大;,随增大而减小;,随增大而增大(任选一条即可);(3)或【分析】(1)将代入中求出的值即可;将代入,求出;将代入求出的值即可;(2)根据表格描点连线画出函数图像,根据函数图像写出性质即可;(3)观察在下方对应的的取值范围即可【详解】解:(1)将代入中得:,解得:,将代入得:,将代入得:,故答案为:,;(2)函数图像如图所示:如图可知:,随增大而减小;,取得最小值;,随增大而增大;,随增大而减小;,随增大而增大(任选一条即可);(3)根据函数图像可知y1y2的解集为:或,故答案为:或【点睛】本题考查了一次函数得图像和性质,二次函数图像和性质,反比例函数图像和性质,会用描点法画出函数图像,利用数形结合的思想得到函数的性质是解题的关键2、(1)反比例函数;(2)SAOF=【分析】(1)利用待定系数法求反比列函数解析式,把点A坐标代入解析式得,求出k即可;(2)过A作ADOB于D,FGAO于G,根据勾股定理求出菱形边长OA,再求菱形面积,根据三角形面积是菱形面积的一半即可求解【详解】解:(1)反比例函数在第一象限内的图象经过点A(6,8),解得,反比例函数;(2)过A作ADOB于D,FGAO于G,A(6,8),AD=8,OD=6,OA四边形OACB是菱形,OB=OA=10,S菱形OBCA=OB·AD=10×8=80,SAOF=【点睛】本题考查待定系数法求分别列函数解析式,勾股定理求菱形边长,菱形性质,菱形面积,三角形面积,掌握待定系数法求分别列函数解析式,勾股定理求菱形边长,菱形性质,菱形面积,三角形面积是解题关键3、(1)k1-k2;(2)2,;,3;【分析】(1)根据反比例函数中比例系数k的几何意义即可解答;(2)根据PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,分别把P点的横纵坐标代入反比例函数y=即可求出E、F两点的坐标;先根据P点的坐标求出k1的值,再由E、F两点的坐标用k2表示出PE、PF的长,再用k2表示出PEF的面积,把(1)的结论代入求解即可【详解】解:(1)P是点P是反比例函数y= (k10,x0)图象上一动点,S矩形PBOA=k1,E、F分别是反比例函数y=(k20且|k2|k1)的图象上两点,SOBF=SAOE=|k2|,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|,k20,四边形PEOF的面积S1=S矩形PBOA+SOBF+SAOE=k1+|k2|=k1-k2故答案为:k1-k2;(2)PEx轴,PFy轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,E、F两点的坐标分别为E(2,),F(,3);故答案为:2,;,3;P(2,3)在函数y=的图象上,k1=6,E、F两点的坐标分别为E(2,),F(,3);PE=3-,PF=2-,SPEF=,SOEF=,k20,k2=-9反比例函数y=的解析式为【点睛】本题考查了反比例函数综合题,涉及到反比例函数系数k的几何意义及三角形的面积公式、两点间的距离公式,涉及面较广,难度较大4、(1),;(2)或;(3)或【分析】(1)先由点A(1,2)在反比例函数图象上求解反比例函数的解析式,再求解B的坐标,再把A,B的坐标代入一次函数的解析式,求解一次函数的解析式即可;(2)先求解 设点,可得 再解绝对值方程可得答案;(3)结合函数图象,根据一次函数的图象在反比例函数的图象的下方,从而可得答案.【详解】解:(1) 反比例函数y2(m0)的图象过点A(1,2) 反比例函数的解析式为: 把B(2,a)代入可得: 把代入 y1kx+b(k0), 解得: 所以一次函数的解析式为: (2)令 则 则 设点, 解得:或 或 (3) kx+b0, 所以一次函数值小于反比例函数值,即一次函数的图象在反比例函数图象的下方,所以或【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的图象,坐标与图形的面积,利用函数图象写不等式的解集,掌握“数形结合的方法求解不等式的解集”是解本题的关键.5、(1);(2)当点在原点右侧时,当点在原点左侧时,【分析】(1)由点A和点B都在反比例函数图像上得到,解方程求出m的值,进而求出点A和点B的坐标,代入表达式利用待定系数法即可求出反比例函数y和直线yaxb的解析式;(2)直线与轴的交点为,过点,作轴的垂线,垂足分别为,得到,即,分情况讨论即可解决【详解】解:(1)反比例函数y的图象与直线yaxb相交于点A(m,m9),B(1,m)将A点代入y得:,将B点代入y得:,解得:(舍去),A(-2,3),B(1,-6)将A(-2,3)点代入y得:,反比例函数y解析式为,将A(-2,3),B(1,-6)代入直线yaxb,得:,解得:,直线yaxb的解析式为(2)如图所示,连接AB,作ACx轴于点C,作BDx轴于点D,AB与x轴交于点E,当时,解得即,又,即, 当点在原点右侧时, 当点在原点左侧时,【点睛】此题考查了待定系数法求函数解析式,反比例函数与一次函数的性质等知识,解题的关键是熟练掌握数形结合的思想