2011年普通高等学校招生全国统一考试数学理试题(福建卷解析版).doc
-
资源ID:46260592
资源大小:1.33MB
全文页数:12页
- 资源格式: DOC
下载积分:10金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2011年普通高等学校招生全国统一考试数学理试题(福建卷解析版).doc
2011年普通高等学校招生全国统一考试数学理试题(福建卷,解析版)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷1至2页,第卷第3至6页。第卷第21题为选考题,其他题为必考题。满分150分。注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。2. 第卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。3. 考试结束,考生必须将试题卷和答题卡一并交回。参考公式:样本数据x1,x2,,xa的标准差 锥体体积公式 其中为样本平均数 其中S为底面面积,h为高柱体体积公式 球的表面积,体积公式V=Sh 其中S为底面面积,h为高 其中R为球的半径第卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。1 虚数单位,若集合S=,则A. B. C. D.2.若aR,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B必要而不充分条件C.充要条件 C.既不充分又不必要条件【答案】A 【解析】:a=2(a-1)(a-2)=0 充分 反之(a-1)(a-2)=0 a=2不必要,故选A3.若tan=3,则的值等于A.2 B.3 C.4 D.6【答案】D 【解析】:。 故选D4.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于A. B. C. D.【答案】C 【解析】:矩形ABCD的面积,ABE的面积,点Q取自ABE内部的概率等于故选C5.(+2x)dx等于A.1 B.e-1 C.e D.e+17.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于A. B.或2 C.2 D.【答案】A 【解析】:设|PF1|=4k, |PF2|=2k, |F1F2|=3k,若圆锥曲线为椭圆时,即,于是;,若圆锥曲线为双曲线时,即,于是故选A8.已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域上的一个动点,则的取值范围是A.-1.0 B.0.1 C.0.2 D.-1.210.已知函数=,对于曲线y=上横坐标成等差数列的三个点A,B,C,给出以下判断:ABC一定是钝角三角形ABC可能是直角三角形ABC可能是等腰三角形ABC不可能是等腰三角形 其中,正确的判断是A. B. C. D.【答案】B 【解析】:设A,B,C坐标分别为,则中点为,由横坐标成等差数列得,得中点P, ,由得,则,在上递增 ,即B在下方,故正确二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。11.运行如图所示的程序,输出的结果是_。13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_。【答案】 【解析】:随机取出2球有,取出的2个球颜色不同有,所取出的2个球颜色不同的概率14.如图,ABC中,AB=AC=2,BC=,点D 在BC边上,ADC=45°,则AD的长度等于_。【答案】 【解析】:过A作于E,AB=AC, E为BC中点,BC=所以CE,在中,在中,ADC=45°,所以15.设V是全体平面向量构成的集合,若映射满足:对任意向量以及任意R,均有则称映射具有性质P。现先给出如下映射: 其中,具有性质P的映射的序号为_。(写出所有具有性质P的映射的序号)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤。16.(本小题满分13分)已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数的解析式。【解析】:本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。(I)由得,解得,所以(II)由(I)可知,所以,因为函数的最大值为3,所以=3;因为当时取得最大值,所以,又故所以函数的解析式为=。17.(本小题满分13分)已知直线l:y=x+m,mR。(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想,数形结合思想,化归与转化思想、分类与整合思想,满分13分。(II)同解法一。18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。(I)求a的值(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。本小题主要考查函数、导数等基础知识、考查运算求解能力、应用意识、考查函数与方程思想、数形结合思想、化归与转化思想,满分13分。【解析】:(I)因为时,所以(II)由(I)可知,该商品每日的销售量,所以商场每日销售该商品所获得的利润从而于是,当变化时,的变化情况如下表:(3,4)4(4,6)+0-单调递增极大值42单调递减由上表可得,是函数在区间(3,6)内的极大值点,也是最大值点,所以当时,函数取得最大值,且最大值等于42答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(I)已知甲厂产品的等级系数X1的概率分布列如下所示:5678P0.4ab0.1且的数字期望=6,求a,b的值;【解析】:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识、考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。解:(I)因为,所以,即又由的概率分布列得,即由解得(II)由已知得,样本的频率分布表如下:345678030202010101用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数的概率分布列如下:345678030202010101所以=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8即乙厂产品的等级系数的数学期望等于4.8。()乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为=1,因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为=1.2据此,乙厂的产品更其可购买性。20.(本小题满分14分)如图,四棱锥P-ABCD中,PA底面ABCD,四边形ABCD中,ABAD,AB+AD=4,CD=,.(I)求证:平面PAB平面PAD;(II)设AB=AP.(i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。【解析】:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。法一:()因为平面,平面,所以,又,所以平面,又平面,所以平面平面。(II)以为坐标原点,建立空间直角坐标系(如图)在平面内,作于点,则,在,设=,则,由+=4得=4-,所以()设平面的法向量为,由得取得平面的一个法向量,又,故由直线与平面所成的角为得即,解得或(舍去,因为),所以()假设在线段上存在一个点C,使得点到点的距离都相等。由,从而,即,所以设,则在中,这与矛盾,所以在线段上不存在一个点,使得点到的距离都相等。法二:()同解法一(II)()以为坐标原点,建立空间直角坐标系(如图)在平面内,作于点E,则,在中,设=,则,由+=4得=4-,所以()假设在线段上存在一个点C,使得点到点的距离都相等。由,从而,即,所以设,则在中,这与矛盾,所以在线段上不存在一个点,使得点到的距离都相等。21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 (其中a0,b0).(I)若a=2,b=3,求矩阵M的逆矩阵M-1;(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C:,求a,b的值.【解析】:本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。()设矩阵的逆矩阵=,则=又=,所以=所以,即,故所求的逆矩阵=()把极坐标系下的点化为直角坐标,得,因为点的直角坐标(0,4)满足直线的方程,所以点在直线上。(II)因为点在曲线上,故可设点的坐标为,从而点到直线的距离为由此得,当=-1时,取得最小值,且最小值为(3)(本小题满分7分)选修4-5:不等式选讲设不等式的解集为M.(I)求集合M;(II)若a,bM,试比较ab+1与a+b的大小.12