山东省高中数学《3.3.1二元一次不等式(组)与平面区域》教案1 新人教A版必修5.doc
-
资源ID:46552200
资源大小:143KB
全文页数:5页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省高中数学《3.3.1二元一次不等式(组)与平面区域》教案1 新人教A版必修5.doc
课题:3.3.1二元一次不等式(组)与平面区域(1)高二数学 教·学案主备人:执教者:【学习目标】1、知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2、过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,培养学生观察以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力; 3、情感、态度与价值观:通过本节课的学习,着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,使学生体会到观察、联想、猜想、归纳等数学思想方法;【学习重点】 会求二元一次不等式(组)表示的平面区域;【学习难点】 准确画出二元一次不等式(组)所表示的平面区域;【授课类型】 新授课【学习方法】 讲练结合法【学习过程】一、引入1、从实际问题中抽象出二元一次不等式(组)的数学模型以实际生活中的实例提出问题:一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔贷款资金至少可以带来30 000元的效益,其中从企业贷款中获益12,从个人贷款中获益10,那么,信贷部应该如何分配资金?2、教师引导学生思考、探究,让学生经历建立线性规划模型的过程。在获得探究体验的基础上,通过交流形成共识。二、新课学习1、建立二元一次不等式模型(把实际问题 转化 数学问题)设用于企业贷款的资金为x元,用于个人贷款的资金为y元。(把文字语言 转化 符号语言)资金不超过25 000 000元 (1)预计企业贷款创收12%,个人贷款创收10%,共创收30 000 元以上 (2)资金数额都不能是负值 (3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:2、二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。(2)二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组。(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。3、探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y<6的解集所表示的图形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点P是直线x-y=6上的点,选取点A,使它的坐标满足不等式x-y<6,请同学们完成课本第83页的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此表格,直线x-y=6左上方的点的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)三、 应用示例例1 画出不等式表示的平面区域。解:先画直线(画成虚线).取原点(0,0),代入+4y-4,0+4×0-4=-40,原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当时,常把原点作为此特殊点。变式1、画出不等式所表示的平面区域。变式2、画出不等式所表示的平面区域。例2 用平面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。三、课堂练习教材86页的练习1、2、3四、小结1、二元一次不等式表示的平面区域2、二元一次不等式表示哪个平面区域的判断方法3、二元一次不等式组表示的平面区域五、作业 同步学案3.3.1(1)个性设计课后反思:5