欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    五年高考真题2016届高考数学复习第三章第二节导数的应用理全国通用.doc

    • 资源ID:46573053       资源大小:335KB        全文页数:30页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    五年高考真题2016届高考数学复习第三章第二节导数的应用理全国通用.doc

    考点一利用导数研究函数的单调性1(2015·福建,10)若定义在R上的函数f(x)满足f(0)1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是()Af BfCf Df解析导函数f(x)满足f(x)k1,f(x)k0,k10,0,可构造函数g(x)f(x)kx,可得g(x)0,故g(x)在R上为增函数,f(0)1,g(0)1,gg(0),f1,f,选项C错误,故选C.答案C2(2011·辽宁,11)函数f(x)的定义域为R,f(1)2,对任意xR,f(x)>2,则f(x)>2x4的解集为()A(1,1) B(1,)C(,1) D(,)解析设g(x)f(x)2x4,则g(1)f(1)2×(1)40,g(x)f(x)2>0,g(x)在R上为增函数由g(x)>0,即g(x)>g(1)x>1,选B.答案B3(2015·新课标全国,21)设函数f(x)emxx2mx.(1)证明:f(x)在(,0)单调递减,在(0,)单调递增;(2)若对于任意x1,x21,1,都有|f(x1)f(x2)|0e1,求m的取值范围(1)证明f(x)m(emx1)2x.若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.若m0,则当x(,0)时,emx10,f(x)0;当x(0,)时,emx10,f(x)0.所以,f(x)在(,0)单调递减,在(0,)上单调递增(2)解由(1)知,对任意的m,f(x)在1,0上单调递减,在0,1上单调递增,故f(x)在x0处取得最小值所以对于任意x1,x21,1,|f(x1)f(x2)|e1的充要条件是即设函数g(t)ette1,则g(t)et1.当t0时,g(t)0;当t0时,g(t)0.故g(t)在(,0)上单调递减,在(0,)上单调递增又g(1)0,g(1)e12e0,故当t1,1时,g(t)0.当m1,1时,g(m)0,g(m)0,即式成立;当m1时,由g(t)的单调性,g(m)0,即emme1;当m1时,g(m)0,即emme1.综上,m的取值范围是1,14(2015·北京,18)已知函数f(x)ln.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)求证:当x(0,1)时,f(x)2;(3)设实数k使得f(x)k对x(0,1)恒成立,求k的最大值(1)解因为f(x)ln(1x)ln(1x),所以f(x),f(0)2.又因为f(0)0,所以曲线yf(x)在点(0,f(0)处的切线方程为y2x.(2)证明令g(x)f(x)2,则g(x)f(x)2(1x2).因为g(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增所以g(x)>g(0)0,x(0,1),即当x(0,1)时,f(x)>2.(3)解由(2)知,当k2时,f(x)>k对x(0,1)恒成立当k>2时,令h(x)f(x)k,则h(x)f(x)k(1x2).所以当0<x<时,h(x)<0,因此h(x)在区间上单调递减当0<x<时,h(x)<h(0)0,即f(x)<k.所以当k>2时,f(x)>k并非对x(0,1)恒成立综上可知,k的最大值为2.5(2015·四川,21)已知函数f(x)2(xa)ln xx22ax2a2a,其中a0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a(0,1),使得f(x)0在区间(1,)内恒成立,且f(x)0在区间(1,)内有唯一解(1)解由已知,函数f(x)的定义域为(0,),g(x)f(x) 2(xa)2ln x2,所以g(x)2,当0a时,g(x)在区间,上单调递增,在区间上单调递减;当a时,g(x)在区间(0,)上单调递增(2)证明由f(x)2(xa)2ln x20,解得a,令(x)2ln xx22x2,则(1)10,(e)20,故存在x0(1,e),使得(x0)0,令a0,u(x)x1ln x(x1),由u(x)10知,函数u(x)在区间(1,)上单调递增,所以0a01,即a0(0,1),当aa0时,有f(x0)0,f(x0)(x0)0,由(1)知,f(x)在区间(1,)上单调递增,故当x(1,x0)时,f(x)0,从而f(x)f(x0)0;当x(x0,)时,f(x)0,从而f(x)f(x0)0,所以,当x(1,)时,f(x)0,综上所述,存在a(0,1),使得f(x)0在区间(1,)内恒成立,且f(x)0在区间(1,)内有唯一解6.(2015·天津,20)已知函数f(x)nxxn,xR,其中nN*,n2.(1)讨论f(x)的单调性;(2)设曲线yf(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为yg(x),求证:对于任意的正实数x,都有f(x)g(x);(3)若关于x的方程f(x)a(a为实数)有两个正实根x1,x2,求证:|x2x1|2.(1)解由f(x)nxxn,可得f(x)nnxn1n(1xn1)其中nN*,且n2,下面分两种情况讨论:当n为奇数时令f(x)0,解得x1,或x1.当x变化时,f(x),f(x)的变化情况如下表:x(,1)(1,1)(1,)f(x)f(x)所以,f(x)在(,1),(1,)上单调递减,在(1,1)内单调递增当n为偶数时当f(x)0,即x1时,函数f(x)单调递增;当f(x)0,即x1时,函数f(x)单调递减;所以,f(x)在(,1)上单调递增,在(1,)上单调递减(2)证明设点P的坐标为(x0,0),则x0n,f(x0)nn2.曲线yf(x)在点P处的切线方程为yf(x0)(xx0),即g(x)f(x0)(xx0)令F(x)f(x)g(x),即F(x)f(x)f(x0)(xx0),则F(x)f(x)f(x0)由于f(x)nxn1n在(0,)上单调递减,故F(x)在(0,)上单调递减,又因为F(x0)0,所以当x(0,x0)时,F(x)0,当x(x0,)时,F(x)0,所以F(x)在(0,x0)内单调递增,在(x0,)上单调递减,所以对于任意的正实数x,都有F(x)F(x0)0,即对于任意的正实数x,都有f(x)g(x)(3)证明不妨设x1x2.由(2)知g(x)(nn2)(xx0),设方程g(x)a的根为x2,可得x2x0.当n2时,g(x)在(,)上单调递减,又由(2)知g(x2)f(x2)ag(x2),可得x2x2.类似地,设曲线yf(x)在原点处的切线方程为yh(x),可得h(x)nx.当x(0,),f(x)h(x)xn0,即对于任意的x(0,),f(x)h(x)设方程h(x)a的根为x1,可得x1.因为h(x)nx在(,)上单调递增,且h(x1)af(x1)h(x1),因此x1x1.由此可得x2x1x2x1x0.因为n2,所以2n1(11)n11C1n1n,故2nx0.所以,|x2x1|2.7(2014·广东,21)设函数f(x),其中k<2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<6,求D上满足条件f(x)>f(1)的x的集合(用区间表示)解(1)由题意知(x22xk3)(x22xk1)>0,因此或,设y1x22xk3,y2x22xk1,则这两个二次函数的对称轴均为x1,且方程x22xk30的判别式144(k3)4k8,方程x22xk10的判别式244(k1)84k,因为k<2,所以2>1>0,因此对应的两根分别为x1,21±,x3,41±,且有1<1<1<1,因此函数f(x)的定义域D为(,1)(1,1)(1,)(2)由(1)中两个二次函数的单调性,且对称轴都为x1,易知函数f(x)在(,1)上单调递增,在(1,1)上单调递减,在(1,1)上单调递增,在(1,)上单调递减(3)由于k<6,故1<1<3<1<1<1<1.利用函数图象的对称性可知f(1)f(3),再利用函数f(x)的单调性可知在(1,1)上f(x)>f(1)f(3)的解集为(1,3),在(1,1)上f(x)>f(1)的解集为(1,1)再在其余两个区间(,1)和(1,)上讨论令x1,则(x22xk)22(x22xk)3k28k12,令(x22xk)22(x22xk)3k28k12,则(x22xk)22(x22xk)(k28k15)0,即(x22xk)22(x22xk)(k5)(k3)0,即x22xk(k5)x22xk(k3)0,化简得(x22x2k5)(x22x3)0,解得除了3,1的另外两个根为1±,因此利用函数f(x)的单调性可知在(,1)上f(x)>f(1)的解集为(1,1),在(1,)上f(x)>f(1)的解集为(1,1),综上所述,k<6时,在D上f(x)>f(1)的解集为(1,1)(1,3)(1,1)(1,1)8(2013·重庆,17)设f(x)a(x5)26ln x,其中aR,曲线yf(x)在点(1,f(1)处的切线与y轴相交于点(0,6)(1)确定a的值;(2)求函数f(x)的单调区间与极值解(1)因为f(x)a(x5)26ln x,故f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲线yf(x)在点(1,f(1)处的切线方程为y16a(68a)(x1),由点(0,6)在切线上可得616a8a6,故a.(2)由(1)知,f(x)(x5)26ln x(x>0),f(x)x5.令f(x)0,解得x12,x23.当0<x<2或x>3时,f(x)>0,故f(x)在(0,2),(3,)上为增函数;当2<x<3时,f(x)<0,故f(x)在(2,3)上为减函数由此可知f(x)在x2处取得极大值f(2)6ln 2,在x3处取得极小值f(3)26ln 3.9(2012·北京,18)已知函数f(x)ax21(a>0),g(x)x3bx.(1)若曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a24b时,求函数f(x)g(x)的单调区间,并求其在区间(,1上的最大值解(1)f(x)2ax,g(x)3x2b.因为曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线,所以f(1)g(1),且f(1)g(1)即a11b,且2a3b.解得a3,b3.(2)记h(x)f(x)g(x)当ba2时,h(x)x3ax2a2x1,h(x)3x22axa2.令h(x)0,得x1,x2.a>0时,h(x)与h(x)的情况如下:x)(,)(,)h(x)00h(x)所以函数h(x)的单调递增区间为和;单调递减区间为.当1,即0<a2时,函数h(x)在区间(,1上单调递增,h(x)在区间(,1上的最大值为h(1)aa2.当<1,且1,即2<a6时,函数h(x)在区间内单调递增,在区间上单调递减,h(x)在区间(,1上的最大值为h1.当<1,即a>6时,函数h(x)在区间内单调递增,在区间内单调递减,在区间上单调递增又因hh(1)1aa2(a2)2>0,所以h(x)在区间(,1上的最大值为h1.考点二利用导数研究函数的极值与最值1(2015·陕西,12)对二次函数f(x)ax2bxc(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A1是f(x)的零点 B1是f(x)的极值点C3是f(x)的极值 D点(2,8)在曲线yf(x)上解析A正确等价于abc0,B正确等价于b2a,C正确等价于3,D正确等价于4a2bc8.下面分情况验证,若A错,由、组成的方程组的解为符合题意;若B错,由、组成的方程组消元转化为关于a的方程后无实数解;若C错,由、组成方程组,经验证a无整数解;若D错,由、组成的方程组a的解为也不是整数综上,故选A.答案A2(2015·新课标全国,12)设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x>0时,xf(x)f(x)0,则使得f(x)>0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0)D(0,1)(1,)解析因为f(x)(xR)为奇函数,f(1)0,所以f(1)f(1)0.当x0时,令g(x),则g(x)为偶函数,且g(1)g(1)0.则当x0时,g(x)0,故g(x)在(0,)上为减函数,在(,0)上为增函数所以在(0,)上,当0x1时,g(x)g(1)00f(x)0;在(,0)上,当x1时,g(x)g(1)00f(x)0.综上,得使得f(x)0成立的x的取值范围是(,1)(0,1),选A.答案A3(2014·新课标全国,12)设函数f(x)sin.若存在f(x)的极值点x0满足xf(x0)2<m2,则m的取值范围是()A(,6)(6,)B(,4)(4,)C(,2)(2,)D(,1)(1,)解析由正弦型函数的图象可知:f(x)的极值点x0满足f(x0)±,则k(kZ),从而得x0(k)m(kZ)所以不等式xf(x0)2<m2即为(k)2m23<m2,变形得m2>3,其中kZ.由题意,存在整数k使得不等式m2>3成立当k1且k0时,必有>1,此时不等式显然不能成立,故k1或k0,此时,不等式即为m2>3,解得m<2或m>2.答案C4(2013·浙江,8)已知e为自然对数的底数,设函数f(x)(ex1)(x1)k(k1,2),则()A当k1时,f(x)在x1处取到极小值B当k1时,f(x)在x1处取到极大值C当k2时,f(x)在x1处取到极小值D当k2时,f(x)在x1处取到极大值解析当k1时,f(x)(ex1)(x1),此时f(x)ex(x1)(ex1)ex·x1,所以f(1)e10,所以f(1)不是极值,A,B项均错当k2时,f(x)(ex1)(x1)2,此时f(x)ex(x1)2(2x2)(ex1)ex·x22xex2ex(x1)(x1)2(x1)(x1)ex(x1)2,所以f(1)0,且当x>1时,f(x)>0;在x1附近的左侧,f(x)<0,所以f(1)是极小值答案C5(2012·陕西,7)设函数f(x)xex,则()Ax1为f(x)的极大值点Bx1为f(x)的极小值点Cx1为f(x)的极大值点Dx1为f(x)的极小值点解析f(x)(x1)ex,当x<1时,f(x)<0,当x>1时,f(x)>0,所以x1为f(x)的极小值点,故选D.答案D6(2011·广东,12)函数f(x)x33x21在x_处取得极小值解析f(x)3x26x0得x0或x2.当x(,0)(2,)时f(x)>0,f(x)为增函数当x(0,2)时,f(x)<0,f(x)为减函数f(x)在x2处取得极小值答案27(2015·江苏,19)已知函数f(x)x3ax2b(a,bR)(1)试讨论f(x)的单调性;(2)若bca(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(,3),求c的值解(1)f(x)3x22ax,令f(x)0,解得x10,x2.当a0时,因为f(x)3x20(x0),所以函数f(x)在(,)上单调递增;当a0时,x(0,)时,f(x)0,x时,f(x)0,所以函数f(x)在,(0,)上单调递增,在上单调递减;当a0时,x(,0)时,f(x)0,x时,f(x)0,所以函数f(x)在(,0),上单调递增,在上单调递减(2)由(1)知,函数f(x)的两个极值为f(0)b,fa3b,则函数f(x)有三个零点等价于f(0)·fb0,从而或又bca,所以当a 0时,a3ac0或当a0时,a3ac0.设g(a)a3ac,因为函数f(x)有三个零点时,a的取值范围恰好是(,3),则在(,3)上g(a)0,且在上g(a)0均恒成立从而g(3)c10,且gc10,因此c1.此时,f(x)x3ax21a(x1)x2(a1)x1a,因函数有三个零点,则x2(a1)x1a0有两个异于1的不等实根,所以(a1)24(1a)a22a30,且(1)2(a1)1a0,解得a(,3).综上c1.8(2015·重庆,20)设函数f(x)(aR)(1)若f(x)在x0处取得极值,确定a的值,并求此时曲线yf(x)在点(1,f(1)处的切线方程;(2)若f(x)在3,)上为减函数,求a的取值范围解(1)对f(x)求导得f(x),因为f(x)在x0处取得极值,所以f(0)0,即a0.当a0时,f(x),f(x),故f(1),f(1),从而f(x)在点(1,f(1)处的切线方程为y(x1),化简得3xey0.(2)由(1)知f(x).令g(x)3x2(6a)xa,由g(x)0解得x1,x2.当xx1时,g(x)0,即f(x)0,故f(x)为减函数;当x1xx2时,g(x)0,即f(x)0,故f(x)为增函数;当xx2时,g(x)0,即f(x)0,故f(x)为减函数由f(x)在3,)上为减函数,知x23,解得a,故a的取值范围为.9(2015·新课标全国,21)已知函数f(x)x3ax,g(x)ln x.(1)当a为何值时,x轴为曲线yf(x)的切线;(2)用minm,n表示m,n中的最小值,设函数h(x)minf(x),g(x)(x>0),讨论h(x)零点的个数解(1)设曲线yf(x)与x轴相切于点(x0,0),则f(x0)0,f(x0)0.即解得x0,a.因此,当a时,x轴为曲线yf(x)的切线(2)当x(1,)时,g(x)ln x<0,从而h(x)minf(x),g(x)g(x)<0,故h(x)在(1,)无零点当x1时,若a,则f(1)a0,h(1)minf(1),g(1)g(1)0,故x1是h(x)的零点;若a<,则f(1)<0,h(1)minf(1),g(1)f(1)<0,故x1不是h(x)的零点当x(0,1)时,g(x)ln x>0.所以只需考虑f(x)在(0,1)的零点个数()若a3或a0,则f(x)3x2a在(0,1)无零点,故f(x)在(0,1)单调而f(0),f(1)a,所以当a3时,f(x)在(0,1)有一个零点;当a0时,f(x)在(0,1)没有零点()若3<a<0,则f(x)在单调递减,在单调递增,故在(0,1)中,当x时,f(x)取得最小值,最小值为f.若f>0,即<a<0,f(x)在(0,1)无零点;若f0,即a,则f(x)在(0,1)有唯一零点;若f<0,即3<a<,由于f(0),f(1)a,所以当<a<时,f(x)在(0,1)有两个零点;当3<a时,f(x)在(0,1)有一个零点综上,当a>或a<时,h(x)有一个零点;当a或a时,h(x)有两个零点;当<a<时,h(x)有三个零点10(2015·安徽,21)设函数f(x)x2axb.(1)讨论函数f(sin x)在内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)x2a0xb0,求函数|f(sin x)f0(sin x)|在上的最大值D;(3)在(2)中,取a0b00,求zb满足D1时的最大值解(1)f(sin x)sin2 xasin xbsin x(sin xa)b,<x<.f(sin x)(2sin xa)cos x,<x<.因为<x<,所以cos x>0,2<2sin x<2.a2,bR时,函数f(sin x)单调递增,无极值a2,bR时,函数f(sin x)单调递减,无极值对于2<a<2,在内存在唯一的x0,使得2sin x0a.<xx0时,函数f(sin x)单调递减;x0x<时,函数f(sin x)单调递增;因此,2<a<2,bR时,函数f(sin x)在x0处有极小值f(sin x0)fb.(2)x时,|f(sin x)f0(sin x)|(a0a)sin xbb0|aa0|bb0|.当(a0a)(bb0)0时,取x,等号成立当(a0a)(bb0)<0时,取x,等号成立由此可知,|f(sin x)f0(sin x)|在上的最大值为D|aa0|bb0|.(3)D1即为|a|b|1,此时0a21,1b1,从而zb1.取a0,b1,则|a|b|1,并且zb1.由此可知,zb满足条件D1的最大值为1.11(2014·山东,20)设函数f(x)k(ln x)(k为常数,e2.718 28是自然对数的底数)(1)当k0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围解(1)函数yf(x)的定义域为(0,),f(x)k由k0可得exkx>0,所以当x(0,2)时,f(x)<0,函数yf(x)单调递减,当x(2,)时,f(x)>0,函数yf(x)单调递增所以f(x)的单调递减区间为(0,2),单调递增区间为(2,)(2)由(1)知,k0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)exkx,x0,),因为g(x)exkexeln k,当0<k1时,当x(0,2)时,g(x)exk>0,yg(x)单调递增故f(x)在(0,2)内不存在两个极值点;当k>1时,得x(0,ln k)时,g(x)<0,函数yg(x)单调递减,x(ln k,)时,g(x)>0,函数yg(x)单调递增所以函数yg(x)的最小值为g(ln k)k(1ln k)函数f(x)在(0,2)内存在两个极值点当且仅当解得e<k<.综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.12(2013·福建,17)已知函数f(x)xaln x(aR)(1)当a2时,求曲线yf(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值解函数f(x)的定义域为(0,),f(x)1.(1)当a2时,f(x)x2ln x,f(x)1(x>0),因而f(1)1,f(1)1,所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.(2)由f(x)1,x>0知:当a0时,f(x)>0,函数f(x)为(0,)上的增函数,函数f(x)无极值;当a>0时,由f(x)0,解得xa.又当x(0,a)时,f(x)<0;当x(a,)时,f(x)>0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a>0时,函数f(x)在xa处取得极小值aaln a,无极大值考点三导数的综合问题1(2015·新课标全国,12)设函数f(x)ex(2x1)axa,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A. B.C. D.解析设g(x)ex(2x1),yaxa,由题知存在唯一的整数x0,使得g(x0)在直线yaxa的下方,因为g(x)ex(2x1),所以当x<时,g(x)<0,当x>时,g(x)>0,所以当x时,g(x)min2e,当x0时,g(0)1,g(1)3e>0,直线ya(x1)恒过(1,0)且斜率为a,故a>g(0)1,且g(1)3e1aa,解得a<1,故选D.答案D2(2014·辽宁,11)当x2,1时,不等式ax3x24x30恒成立,则实数a的取值范围是()A5,3 B.C6,2 D4,3解析当x(0,1时,得a34,令t,则t1,),a3t34t2t,令g(t)3t34t2t,t1,),则g(t)9t28t1(t1)(9t1),显然在1,)上,g(t)<0,g(t)单调递减,所以g(t)maxg(1)6,因此a6;同理,当x2,0)时,得a2.由以上两种情况得6a2,显然当x0时也成立故实数a的取值范围为6,2答案C3(2013·四川,10)设函数f(x)(aR,e为自然对数的底数)若曲线ysin x上存在点(x0,y0)使得f(f(y0)y0,则a的取值范围是()A1,e Be11,1C1,e1 De11,e1解析因为y0sin x01,1,而f(x)0,f(f(y0)y0,所以y00,1设x,x0,1,所以exxx2a在x0,1上有解,令g(x)exxx2,所以g(x)ex12x,设h(x)ex12x,则h(x)ex2,所以当x(0,ln 2)时,h(x)0,当x(ln 2,1)时,h(x)0,所以g(x)g(ln 2)32ln 20,所以g(x)在0,1上单调递增所以原题中的方程有解必须方程有解,所以g(0)ag(1),故选A.答案A4(2015·广东,19)设a>1,函数f(x)(1x2)exa.(1)求f(x)的单调区间;(2)证明:f(x)在(,)上仅有一个零点;(3)若曲线yf(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m1.(1)解f(x)2xex(1x2)ex(x22x1)ex(x1)2exxR,f(x)0恒成立f(x)的单调增区间为(,)(2)证明f(0)1a,f(a)(1a2)eaa,a>1,f(0)<0,f(a)>2aeaa>2aaa>0,f(0)·f(a)<0,f(x)在(0,a)上有一零点,又f(x)在(,)上递增,f(x)在(0,a)上仅有一个零点,f(x)在(,)上仅有一个零点(3)证明f(x)(x1)2ex,设P(x0,y0),则f(x0)ex0(x01)20,x01,把x01,代入yf(x)得y0a,kOPa.f(m)em(m1)2a,令g(m)em(m1),g(m)em1.令g(x)>0,则m>0,g(m)在(0,)上增令g(x)<0,则m<0,g(m)在(,0)上减g(m)ming(0)0.em(m1)0,即emm1.em(m1)2(m1)3,即a(m1)3.m1,即m1.5(2015·山东,21)设函数f(x)ln(x1)a(x2x),其中aR.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若x0,f(x)0成立,求a的取值范围解(1)由题意知,函数f(x)的定义域为(1,),f(x)a(2x1).令g(x)2ax2axa1,x(1,)当a0时,g(x)1,此时f(x)0,函数f(x)在(1,)上单调递增,无极值点;当a0时,a28a(1a)a(9a8)()当0a时,0,g(x)0,f(x)0,函数f(x)在(1,)上单调递增,无极值点;()当a时,0,设方程2ax2axa10的两根为x1,x2(x1x2),因为x1x2,所以x1,x2.由g(1)10,可得1x1.所以当x(1,x1)时,g(x)0,f(x)0,函数f(x)单调递增;当x(x1,x2)时,g(x)0,f(x)0,函数f(x)单调递减;当x(x2,)时,g(x)0,f(x)0,函数f(x)单调递增;因此函数有两个极值点()当a0时,0,由g(1)10,可得x11.当x(1,x2)时,g(x)0,f(x)0,函数f(x)单调递增;当x(x2,)时,g(x)0,f(x)0,函数f(x)单调递减;所以函数有一个极值点综上所述,当a0时,函数f(x)有一个极值点;当0a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点(2)由(1)知,当0a时,函数f(x)在(0,)上单调递增,因为f(0)0,所以x(0,)时,f(x)0,符合题意;当a1时,由g(0)0,得x20,所以函数f(x)在(0,)上单调递增,又f(0)0,所以x(0,)时,f(x)0,符合题意;当a1时,由g(x)0,可得x20.所以x(0,x2)时,函数f(x)单调递减;因为f(0)0,所以x(0,x2)时,f(x)0,不合题意;当a0时,设h(x)xln(x1)因为x(0,)时,h(x)10 ,所以h(x)在(0,)上单调递增,因此当x(0,)时,h(x)h(0)0,即ln(x1)x.可得f(x)xa(x2x)ax2(1a)x,当x1时,ax2(1a)x0,此时f(x)0,不合题意综上所述,a的取值范围是0,16(2015·湖南,21)已知a0,函数f(x)eaxsin x(x0,)记xn为f(x)的从小到大的第n(nN*)个极值点,证明:(1)数列f(xn)是等比数列;(2)若a,则对一切nN*,xn|f(xn)|恒成立. 证明(1)f(x)aeaxsin xeaxcos xeax(asin xcos x)eaxsin(x),其中tan ,0.令f

    注意事项

    本文(五年高考真题2016届高考数学复习第三章第二节导数的应用理全国通用.doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开