九年级中考数学第三轮冲刺专题复习--二次函数-试卷.doc
-
资源ID:4662982
资源大小:463.87KB
全文页数:8页
- 资源格式: DOC
下载积分:12金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
九年级中考数学第三轮冲刺专题复习--二次函数-试卷.doc
九年级中考数学第三轮冲刺专题复习-二次函数一、选择题(本大题共12道小题)1. 抛物线y=-3x2+6x+2的对称轴是()A.直线x=2B.直线x=-2C.直线x=1D.直线x=-12. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)3. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.44. 若二次函数yx2bx5配方后为y(x2)2k,则b,k的值分别为()A. 0,5 B. 0,1 C. 4,5 D. 4,15. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x-10234y50-4-30下列结论:抛物线的开口向上;抛物线的对称轴为直线x=2;当0<x<4时,y>0;抛物线与x轴的两个交点间的距离是4;若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2.其中正确的个数是()A.2B.3C.4D.56. 抛物线yx22x3的对称轴是()A. 直线x1B. 直线x1C. 直线x2D. 直线x27. 二次函数yax2bxc(a,b,c为常数且a0)的图象如图所示,则一次函数yaxb与反比例函数y的图象可能是() 8. 北中环桥是省城太原的一座跨汾河大桥,它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为()A.y=x2B.y=-x2C.y=x2D.y=-x29. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中C=120.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 m2C.24 m2D. m210. 二次函数yax2bxc(a0)的图象如图所示,下列结论:b<0;c>0;ac<b;b24ac>0,其中正确的个数是()A. 1 B. 2 C. 3 D. 411. 已知函数yax22ax1(a是常数,a0),下列结论正确的是()A. 当a1时,函数图象过点(1,1)B. 当a2时,函数图象与x轴没有交点C. 若a0,则当x1时,y随x的增大而减小D. 若a0,则当x1时,y随x的增大而增大12. 在平面直角坐标系中,已知ab,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N-1或M=N+1B.M=N-1或M=N+2C.M=N或M=N+1D.M=N或M=N-1二、填空题(本大题共10道小题)13. 已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”“>”或“=”).14. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图)已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为_ m2.15. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.16. 已知二次函数y=-(x-1)2+2,当t<x<5时,y随x的增大而减小,则实数t的取值范围是.17. 某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.18. 已知抛物线y=ax2+4ax+4a+1(a0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.19. 如图,抛物线yax2bxc与x轴相交于点A,B(m2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是_20. 已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.21. 如图,直线yxm和抛物线yx2bxc都经过点A(1,0)和B(3,2),不等式x2bxcxm的解集为_22. 竖直上抛的小球离地高度是它运动时间的二次函数小军相隔1秒依次竖直向上抛出两个小球假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t_三、解答题(本大题共8道小题)23. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量(售价-进价)(1)求y关于x的函数解析式(不要求写出自变量的取值范围);该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.24. 在平面直角坐标系xOy中,抛物线yax2bx2过B(2,6),C(2,2)两点(1)试求抛物线的解析式;(2)记抛物线顶点为D,求BCD的面积;(3)若直线yx向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围25. 如图,二次函数y=-x2+bx+3的图象与x轴交于点A,B,与y轴交于点C,点A的坐标为(-1,0),点D为OC的中点,点P在抛物线上.(1)b=.(2)若点P在第一象限,过点P作PHx轴,垂足为H,PH与BC,BD分别交于点M,N.是否存在这样的点P,使得PM=MN=NH,若存在,求出点P的坐标;若不存在,请说明理由.26. 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图,问饲养室长x为多少时,占地面积y最大?(2)如图,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.27. 如图,抛物线yx2bxc与x轴交于A(3,0),B(1,0)两点,过点B作直线BCx轴,交直线y2x于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由28. 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点(1)建立适当的平面直角坐标系,直接写出O,P,A三点坐标;求抛物线L的解析式;(2)求OAE与OCE面积之和的最大值29. 如图,已知抛物线C:yx2bxc经过A(3,0)和B(0, 3)两点将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C,抛物线C的顶点记为M,它的对称轴与x轴的交点记为N如果以点M、N、M、N为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?30. 如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6(1)求此抛物线的解析式(2)点P在x轴上,直线CP将ABC面积分成2:3两部分,请直接写出P点坐标 8 / 8