山东省烟台市芝罘区高考数学知识点总结专题4数列新人教A版.doc
-
资源ID:46646269
资源大小:250.50KB
全文页数:3页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省烟台市芝罘区高考数学知识点总结专题4数列新人教A版.doc
专题四数列【知识概要】 一、数列的概念 1. 数列的有关概念: (1)定义:按一定的次序排列的一列数;它是定义域为(或的有限子集)的函数所对应的一列函数值,数列是自变量离散变化的函数。 (2)通项公式:数列的第项与项数之间的函数关系,如果能用一个公式表示,这个公式叫做数列的通项公式。 2. 数列的表示法: (1)列表法:用列表法给出函数关系,自变量省略,仅列出函数值;如: (2)图象法:以序号为横坐标,相应项为纵坐标,描点画图得到函数图象,用一群孤立点表示。 (3)解析法:一般用通项公式表示,或用递推关系式表示。如 3. 数列的通项与前项和的关系: ,其中 4. 两个重要的变形: (1) (2) 二、等差数列和等比数列等差数列等比数列1. 定义如果(常数),那么就称为等差数列,为公差。如果(常数),那么就称为等比数列,q为公比。2. 通项公式3. 中项 公式成等差数列 成等比数列 前4. 项和 公式或5. 重要 性质1)若正自然数、满足,则。2)若为等差数列,则 为等差数列。3)若为等差数列,则 也是等差数列,公差为。1)若正自然数、满足 ,则。2)若为等比数列,且 均不为零, 则为等比数列。3)若为等比数列,则 ,也是等比数列,公比分别为。6. 充要 条件为等差数列。为等比数列。7. 相互 关系1)设且,则成等比数列成等差数列。2)是正项等比数列是等差数列。 三、数列通项公式的求法 1. 根据,利用公式求通项。 2. 根据数列的递推关系,叠加法、累乘法求通项,其要点是: (1);(2) 3. 构造新的等差、等比数列,转化法求通项。 四、特殊数列求和 1. 利用等差、等比数列的公式求和。 2. 倒序相加法求和。 3. 乘公比错位相减法求和. 适用于由一个等差数列和一个等比数列对应项乘积组成的数列。 4. 裂项法求和. 它的基本思想是设法将数列的每一项拆成两项(裂项),并使它们在相加时除了首尾各有一项或少数几项外,其余各项都能前后相消.常见裂项公式: (1) (2) 5. 分组求和. 通过拆和组的手段把问题化归为可求或易求的数列的问题。 五、数列应用题 在应用问题中,根据问题构造等差、等比数列的模型,然后再用数列的通项公式或求和公式等知识求解。叁