欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学压轴题专题练习二次函数 复习 .docx

    • 资源ID:4666252       资源大小:209.78KB        全文页数:9页
    • 资源格式: DOCX        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学压轴题专题练习二次函数 复习 .docx

    中考数学压轴题专题练习:二次函数 复习1、如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长2、正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点(1)建立适当的平面直角坐标系,直接写出O、P、A三点坐标;求抛物线L的解析式;(2)求OAE与OCE面积之和的最大值3、已知抛物线的解析式为y=x2+bx+5(1)当自变量 x2时,函数值y 随 x的增大而减少,求b 的取值范围;(2)如图,若抛物线的图象经过点A(2,5),与x 轴交于点C,抛物线的对称轴与x 轴交于B求抛物线的解析式;在抛物线上是否存在点P,使得PAB=ABC?若存在,求出点P 的坐标;若不存在,请说明理由4、如图,在平面直角坐标系中,二次函数的图像与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S。求S的最大值;在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值。5、抛物线y=x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使APB=ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较OCQ与OCA的大小,并说明理由6、如图,已知抛物线y=ax22ax9a与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时, +均为定值,并求出该定值7、如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点求M与N所围成封闭图形内(包括边界)整点的个数8、如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(1,1),B(2,2)过点B作BCx轴,交抛物线于点C,交y轴于点D(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得AOC与OBN相似(边OA与边OB对应)的点N的坐标9、如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由10、如图所示,抛物线y=ax2x+c经过原点O与点A(6,0)两点,过点A作ACx轴,交直线y=2x2于点C,且直线y=2x2与x轴交于点D(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x2的对称点A的坐标,并判断点A是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值11、如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使MQC为等腰三角形且MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由12、如图,已知抛物线y=ax2+bx+c经过点A(3,0),B(9,0)和C(0,4)CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点(1)求出二次函数的表达式以及点D的坐标;(2)若RtAOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到RtA1O1F,求此时RtA1O1F与矩形OCDE重叠部分的图形的面积;(3)若RtAOC沿x轴向右平移t个单位长度(0t6)得到RtA2O2C2,RtA2O2C2与RtOED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围13、如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,4),直线l:y=x4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PHy轴,垂足为H,连接AC求证:ACD是直角三角形;试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?14、如图,抛物线y=x2+bx+c经过点B(3,0),C(0,2),直线l:y=x交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合)(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PMx轴交l于点M,PNy轴交l于点N,求PM+PN的最大值(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由15、如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(1,0)、D(2,3),抛物线与x轴的另一交点为E经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,PFE的面积最大?并求最大值的立方根;(3)是否存在点P使PAE为直角三角形?若存在,求出t的值;若不存在,说明理由16、已知抛物线(a0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,PBA=120,如图所示(1)求抛物线的解析式(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动当点M在曲线PB之间(含端点)移动时,是否存在点M使APM的面积为?若存在,求点M的坐标;若不存在,请说明理由当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标

    注意事项

    本文(中考数学压轴题专题练习二次函数 复习 .docx)为本站会员(ge****by)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开