欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    PCB的特殊加工制程.doc

    • 资源ID:46686861       资源大小:85.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    PCB的特殊加工制程.doc

    PCB的特殊加工制程PCB线路版的加工特殊制程 线路板PCB加工特殊制程作为在PCB行业领域的人士来说,对于PCB抄板,PCB设计相关制程必须得熟练,通过本公司专业PCB抄板人士的分析于总结,我们专业的PCB抄板专家得出以下线路板PCB加工的特殊制程,希望能对PCB行业的人士有所帮助。Additive Process 加成法指非导体的基板表面,在另加阻剂的协助下,以化学铜层进行局部导体线路的直接生长制程(详见电路板信息杂志第 47 期 P.62)。PCB抄板所用的加成法又可分为全加成、半加成及部份加成等不同方式。Backpanels,Backplanes 支撑板是一种厚度较厚(如 0.093“,0.125”)的电路板,专门用以插接联络其它的板子。其做法是先插入多脚连接器(Connector)在紧迫的通孔中,但并不焊锡,而在连接器穿过板子的各导针上,再以绕线方式逐一接线。连接器上又可另行插入一般的PCB抄板。由于这种特殊的板子,其通孔不能焊锡,而是让孔壁与导针直接卡紧使用,故其品质及孔径要求都特别严格,其订单量又不是很多,一般电路板厂都不愿也不易接这种订单,在美国几乎成了一种高品级的专门行业。Build Up Process增层法制程这是一种全新领域的薄形多层板做法,最早启蒙是源自 IBM 的SLC 制程,系于其日本的 Yasu 工厂 1989 年开始试产的,该法是以传统双面板为基础,自两外板面先全面涂布液态感光前质如Probmer 52,经半硬化与感光解像后,做出与下一底层相通的浅形“感光导孔”(Photo-Via) ,再进行化学铜与电镀铜的全面增加导体层,又经线路成像与蚀刻后,可得到新式导线及与底层互连的埋孔或盲孔。如此反复加层将可得到所需层数的多层板。此法不但可免除成本昂贵的机械钻孔费用,而且其孔径更可缩小至10mil以下。过去56年间,各类打破传统改采逐次增层的多层板技术,在美日欧业者不断推动之下,使得此等 Build Up Process 声名大噪,已有产品上市者亦达十余种之多。除上述“感光成孔”外;尚有去除孔位铜皮后,针对有机板材的碱性化学品咬孔、雷射烧孔( Laser Ablation ) 、以及电浆蚀孔 ( Plasma Etching )等不同“成孔”途径。而且也可另采半硬化树脂涂布的新式“背胶铜箔” (Resin Coated Copper Foil ) ,利用逐次压合方式 ( Sequential Lamination )做成更细更密又小又薄的多层板。日后多样化的个人电子产品,将成为这种真正轻薄短小多层板的天下。Cermet 陶金将陶瓷粉末与金属粉末混合,再加入黏接剂做为种涂料,可在电路板面(或内层上)以厚膜或薄膜的印刷方式,做为“电阻器”的布着安置,以代替组装时的外加电阻器。Co-Firing 共烧是瓷质混成PCB电路板(Hybrid)的一个制程,将小型板面上已印刷各式贵金属厚膜糊(Thick Film Paste)的线路,置于高温中烧制。使厚膜糊中的各种有机载体被烧掉,而留下贵金属导体的线路,以做为互连的导线。Crossover越交,搭交板面纵横两条导线之立体交叉,交点落差之间填充有绝缘介质者称之。一般单面板绿漆表面另加碳膜跳线,或增层法之上下面布线均属此等“越交”。Discreate Wiring Board散线PCB电路板,复线板即Multi-Wiring Board的另一说法,是以圆形的漆包线在板面贴附并加通孔而成。此种复线板在高频传输线方面的性能,比一般PCB经蚀刻而成的扁方形线路更好。DYCOstrate电浆蚀孔增层法是位于瑞士苏黎士的一家Dyconex公司所开发的Build up Process。系将板面各孔位处的铜箔先行蚀除,再置于密闭真空环境中,并充入CF4、N2、O2,使在高电压下进行电离形成活性极高的电浆(Plasma),用以蚀穿孔位之基材,而出现微小导孔 (10mil以下) 的专利方法,其商业制程称为DYCOstrate。Electro-Deposited Photoresist电着光阻,电泳光阻是一种新式的“感光阻剂”施工法,原用于外形复杂金属物品的“电着漆”方面,最近才引进到“光阻”的应用上。系采电镀方式将感旋光性带电树脂带电胶体粒子,均匀的镀在PCB电路板铜面上,当成抗蚀刻的阻剂。目前已在内层板直接蚀铜制程中开始量产使用。此种ED光阻按操作方法不同,可分别放置在阳极或阴极的施工法,称为“阳极式电着光阻”及“阴极式电着光阻”。又可按其感光原理不同而有“感光聚合”(负性工作Negative Working )及“感光分解”(正性工作Positive Working)等两型。目前负型工作的ED光阻已经商业化,但只能当做平面性阻剂,通孔中因感光因难故尚无法用于外层板的影像转移。至于能够用做外层板光阻剂的“正型ED”(因属感光分解之皮膜,故孔壁上虽感光不足但并无影响),目前日本业者仍正在加紧努力,希望能够展开商业化量产用途,使细线路的制作比较容易达成。此词亦称为“电泳光阻”(Electrothoretic Photoresist)。Flush Conductor 嵌入式线路,贴平式导体是一外表全面平坦,而将所有导体线路都压入板材之中的特殊PCB抄板电路板。其单面板的做法是在半硬化(Semi Cured)的基材板上,先以影像转移法把板面部份铜箔蚀去而得到线路。再以高温高压方式将板面线路压入半硬化的板材之中,同时可完成板材树脂的硬化作业,成为线路缩入表面内而呈全部平坦的电路板。通常这种板子已缩入的线路表面上,还需要再微蚀掉一层薄铜层,以便另镀0.3mil的镍层,及20微寸的铑层,或10微寸的金层,使在执行滑动接触时,其接触电阻得以更低,也更容易滑动。但此法郄不宜做PTH,以防压入时将通孔挤破,且这种板子要达到表面完全平滑并不容易,也不能在高温中使用,以防树脂膨胀后再将线路顶出表面来。此种技术又称为Etch and Push法,其完工的板子称为Flush-Bonded Board,可用于RotarySwitch及Wiping Contacts等特殊用途。Frit玻璃熔料在厚膜糊 (Poly Thick Film, PTF)印膏中,除贵金属化学品外,尚需加入玻璃粉类,以便在高温焚熔中发挥凝聚与附着效果,使空白陶瓷基板上的印膏,能形成牢固的贵金属电路系统。Fully-Additive Process 全加成法是在完全绝缘的板材面上,以无电沉积金属法(绝大多数是化学铜),生长出选择性电路的做法,称之为“全加成法”。另有一种不太正确的说法是“Fully Electroless”法。Hybrid Integrated Circuit 混成电路是一种在小型瓷质薄基板上,以印刷方式施加贵金属导电油墨之线路,再经高温将油墨中的有机物烧走,而在板面留下导体线路,并可进行表面黏装零件的焊接。是一种介乎印刷电路板与半导体集成电路器之间,属于厚膜技术的电路载体。早期曾用于军事或高频用途,近年来由于价格甚贵且军用日减,且不易自动化生产,再加上电路板的日趋小型化精密化之下,已使得此种 Hybrid 的成长大大不如早年。Interposer互连导电物指绝缘物体所承载之任何两层导体间,其待导通处经加填某些导电类填充物而得以导通者,均称为Interposer。如多层板之裸孔中,若填充银膏或铜膏等代替正统铜孔壁者,或垂直单向导电胶层等物料,均属此类Interposer。Laser Direct Imaging,LDI 雷射直接成像是将已压附干膜的板子,不再用底片曝光以进行影像转移,而代以计算机指挥激光束,直接在干膜上进行快速扫瞄式的感光成像。由于所发出的是单束能量集中的平行光,故可使显像后的干膜侧壁更为垂直。但因此法只能对每片板子单独作业,故量产速度远不如使用底片及传统曝光来的快。LDI 每小时只能生产 30 片中型面积的板子,因而只能在雏型打样或高单价的板类中偶有出现。由于先天性的成本高居不下,故很难在业界中推广。Laser Maching 雷射加工法电子工业中有许多精密的加工,例如切割、钻孔、焊接、熔接等,亦可用雷射光的能量去进行,谓之雷射加工法。所谓 LASER 是指“Light Amplification Stimulated Emission of Radiation”的缩写,大陆业界译为“激光”为其意译,似较音译更为切题。Laser 是在 1959 年由美国物理学家 T.H.Maiman,利用单束光射到红宝石上而产生雷射光,多年来的研究已创造一种全新的加工方式。除了在电子工业外,尚可用于医疗及军事等方面。Micro Wire Board微封线 (封包线)板贴附在板面上的圆截面漆包线(胶封线),经制做PTH完成层间互连的特殊电路板,业界俗称为 Multiwire Board“复线板”,当布线密度甚大(160250in/in2) ,而线径甚小(25mil以下)者,又称为微封线路板。Moulded Circuit模造立体电路板利用立体模具,以射出成型法(Injection Moulding)或转型法,完成立体电路板之制程,称为 Moulded circuit或 Moulded Interconnection Circuit。左图即为两次射出所完成MIC的示意图。Multiwiring Board(or Discrete Wiring Board)复线板是指用极细的漆包线,直接在无铜箔的板面上进行立体交叉布线,再经涂胶固定及钻孔与镀孔后,所得到的多层互连电路板,称之为“复线板”。此系美商PCK 公司所开发,目前日商日立公司仍在生产。此种MWB可节省设计的时间,适用于复杂线路的少量机种(电路板信息杂志第 60 期有专文介绍)。Noble Metal Paste 贵金属印膏是厚膜电路印刷用的导电印膏。当其以网版法印在瓷质的基板上,再以高温将其中有机载体烧走,即出现固着的贵金属线路。此种印膏所加入的导电金属粉粒必须要为贵金属才行,以避免在高温中形成氧化物。商品中所使用者有金、铂、铑、钯或其它等贵金属。Pads Only Board唯垫板早期通孔插装时代,某些高可靠度多层板为保证焊锡性与线路安全起见,特只将通孔与焊环留在板外,而将互连的线路藏入下一内层上。此种多出两层的板类将不印防焊绿漆,在外观上特别讲究,品检极为严格。目前由于布线密度增大,许多便携式电子产品(如大哥大手机),其电路板面只留下SMT焊垫或少许线路,而将互连的众多密线埋入内层,其层间也改采高难度的盲孔或“盖盲孔”(Pads On Hole),做为互连以减少全通孔对接地与电压大铜面的破坏,此种SMT密装板也属唯垫板类。Polymer Thick Film (PTF)厚膜糊指陶瓷基材厚膜电路板,所用以制造线路的贵金属印膏,或形成印刷式电阻膜之印膏而言,其制程有网版印刷及后续高温焚化。将有机载体烧走后,即出现牢固附着的线路系统,此种板类通称为混合电路板(Hybrid Circuits)。Semi-Additive Process半加成制程是指在绝缘的底材面上,以化学铜方式将所需的线路先直接生长出来,然后再改用电镀铜方式继续加厚,称为“半加成”的制程。若全部线路厚度都采用化学铜法时,则称为“全加成”制程。注意上述之定义是出自 1992.7. 发行之最新规范 IPC-T-50E,与原有的 IPC-T-50D(1988.11)在文字上已有所不同。早期之“D版”与业界一般说法,都是指在非导体的裸基材上,或在已有薄铜箔(Thin foil如 1/4 oz或 1/8 oz者)的基板上。先备妥负阻剂之影像转移,再以化学铜或电镀铜法将所需之线路予以加厚。新的50E并未提到薄铜皮的字眼,两说法之间的差距颇大,读者在观念上似乎也应跟着时代进步才是。Substractive Process减成法是指将基板表面局部无用的铜箔减除掉,达成电路板的做法称为“减成法”,是多年来电路板的主流。与另一种在无铜的底材板上,直接加镀铜质导体线路的“加成法”恰好相反。Thick Film Circuit厚膜电路是以网版印刷方式将含有贵金属成份的“厚膜糊”(PTF PolymerThick Film Paste),在陶瓷基材板上(如三氧化二铝)印出所需的线路后,再进行高温烧制(Firing),使成为具有金属导体的线路系统,谓之“厚膜电路”。是属于小型“混成电路”板(Hybrid Circuit)的一种。单面PCB上的“银跳线”(Silver Paste Jumper)也属于厚膜印刷,但却不需高温烧制。在各式基材板表面所印着的线路,其厚度必须在 0.1 mm 4 mil以上者才称为“厚膜”线路,有关此种“电路系统”的制作技术,则称为“厚膜技术”。Thin Film Technology薄膜技术指基材上所附着的导体及互联机路,凡其厚度在 0.1 mm 4 mil 以下,可采真空蒸着法(Vacuum Evaporation)、热裂解涂装法 (Pyrolytic Coating)、阴极溅射法(Cathodic Sputtering)、化学蒸镀法 (Chemical Vapor Deposition)、电镀、阳极处理等所制作者,称之为“薄膜技术”。实用产品类有 Thin Film Hybrid Circuit及 Thin Film Integrated Circuit等。Transfer Laminatied Circuit转压式线路是一种新式的电路板生产法,系利用一种 93 mil厚已处理光滑的不锈钢板,先做负片干膜的图形转移,再进行线路的高速镀铜。经剥去干膜后,即可将有线路的不锈钢板表面,于高温中压合于半硬化的胶片上。再将不锈钢板拆离后,即可得到表面平坦线路埋入式的电路板了。其后续尚可钻孔及镀孔以得到层间的互连。CC-4 Copper complexer 4 ; 是美国PCK公司所开发在特殊无铜箔基板上的全加成法(详见电路板信息杂志第47期有专文介绍)ED Electro - Deposited Photoresist ; 电着光阻IVH Interstitial Via Hole; 局部层间导通孔(指埋通孔与盲通孔等)MLC Multilayer Ceramic;小板瓷质多层电路板PID Photoimagible Dielectric; 感光介质(指用于增层法所涂布的感光板材)PTF Polymer Thick Film; 聚合物厚膜电路片(指用厚膜糊印制之薄片电路板)SLC Surface Laminar Circuits ; 表面薄层线路系 IBM日本Yasu 实验室于1993年 6月发表的新技术,是在双面板材的外面以Curtain Coating式绿漆及电镀铜形成数层互连的线路,已无需再对板材钻孔及镀孔。PCB微通孔制作工艺微通孔是指孔径小于0.15mm的通孔,它所占面积大约是机械钻孔的1/4。由于是盲孔,它们仅在要进行线路连接的层间出现,有助于实现较高的互连密度。微通孔成形利用激光完成,其速度比机械钻孔快得多,并且成本也大大低于后者,它的这些主要优点使其应用不仅仅局限在最外层线路。尽管减小现有通孔结构尺寸也可实现高密度互连,但随着设计要求越来越高,PCB成本将不断上升,因此改造现有工艺还不如转而使用一种全新技术成本来得更低,如使用2+n+2积层结构。 近年来移动通信产品已变得比蜂窝电话复杂得多,如便携式卫星电话、个人智能通信器、电子记事本以及处理视频信号的应用产品等,这些产品的共同点是互连密度非常高而且在高频方面都有特殊要求。它们的线路板表面大部分空间布满了许多小间距元件,在最外面的第一层和第m层(m代表总层数)已基本上没有什么地方可用于布线,因而只能在内层进行,如第二层和第m-1层。在1+n+1结构中,这些层中包含一些由机械钻孔形成的较大铜导电环用于和内层相连,可能无法提供足够空间进行高密度布线。一个解决方法是使第二层和m-1层成为微通孔层,使其在与下一层连接时减小占用面积,这样就可以走线了。通常的做法是使互连密度尽可能与元件接近,要做到这一点最好是用微通孔层,必要时还应使用多个微通孔层。 第一种2+n+2结构线路板仅使用直接与相邻层连接的微通孔,基本制作方法是将做一个微通孔层的步骤进行重复。图1是利用交错排列使第一层和第三层通过微通孔连接的示意图。这种2+n+2结构板使用树脂涂膜铜(RCC)技术生产,特别值得一提的是该方法能保证所有层都具有很高的共面性。这种结构还可以有多种形式(如图2)。 生产微通孔的主要成本在于通孔成形和电镀。对某些应用而言,可以通过减少这两种工艺的工序降低成本,例如在第二层和第三层或第m-1层和m-2层之间如果没有导通孔,则无需相关的电镀过程,此时可用其它类型的通孔取代微通孔。也可通过微通孔将PCB的表层与第三层直接连接(图2a),通孔1-3将外层与第三层相连,而通孔1-2-3则和第二层相连(图2b),通过这种方法能实现所有需要的互连。 一般来说,要保证通孔电镀可靠,通孔1-3和通孔1-2-3的孔径必须大于仅在相邻两层间进行连接的通孔。如果没有通孔2-3,则只能通过第一层实现第二层和第三层的连接,这样会造成第一层空间的浪费,最后的总体互连密度会低于图1所显示的情况。然而没有通孔2-3却有利于在第二层上制作精细的线路,由于仅需对RCC铜箔的基层铜进行蚀刻,所以可做到很高的图形解析度。 通孔1-3使用保形掩膜工艺生成,先在RCC膜上将铜蚀刻出一个口,然后再用红外激光烧蚀掉树脂,这两种工艺的生产率都非常高。蚀刻是一个并行过程,激光钻孔仅烧蚀树脂,可使用快速CO2激光。1-3层通孔还有一些有意思的应用,如该结构里的第二层和第m-1层电位一直保持不变,可作为屏蔽,它们和内层之间无需任何连接,也就不需要2-3层通孔,这样特别是在对电磁兼容性(EMC)要求严格的场合,可在这些内层上进行布线。 制作1-2-3层通孔时,一般第二层覆铜用UV激光开孔,这种工艺钻孔速度较慢,如果使用保形掩膜工艺,则需要较大的孔环。图3比较了第一层和第三层连接的几种方法,通常微通孔交错排列是最受欢迎的方式,在特殊情况下,孔1-3和孔1-2-3占据较大空间是可以接受的,而使用保形掩膜工艺还会浪费更大空间。 微通孔对位 微通孔和微通孔层线路之间的对位是制作多层微通孔电路板的关键。通常情况下微通孔层依靠其下层电路图进行对位,这种方法可使微通孔焊盘最小而充分利用空间节约带来的好处,但这却是以其它层对位不良为代价。随着PCB层数增加,偏差将越来越大,但只要没有哪个元件要求必须同时和所有层都对准,这种积累的偏差也不会造成任何问题,所以应尽可能避免在2+n+2结构中设计穿过所有层的通孔。这类通孔大多数情况下可利用一系列相互连接的微通孔或者内层机械钻孔替代,如果一定要用,其孔环必须很大,避免并列排放的元件影响随后制作的积层,使得它无法体现出自身的优势。 如果因对位原因而不想使用镀通孔,内层通孔可作为一种可靠的替代方法。它利用机械方式在FR-4内层钻孔,电镀后再用环氧树脂填满。最简单的做法是在RCC铜箔以真空压制到内层上时,用RCC铜箔上的环氧树脂填充通孔。此方法效果不错,但它并不是任何时候都适用,对较厚的PCB板而言,RCC铜箔上的环氧树脂显得数量不够,此外特别是在可靠性要求高的PCB板上,用RCC铜箔环氧树脂作为填料不是最好,应选择那些针对可靠性进行过优化的材料。上述两种情况最好使用塞孔工艺,这种工艺采用特殊的丝印方法填充通孔,固化后将填料与表面磨平再电镀铜。 非覆铜材料夹层 1+n+1结构中还用到一些非覆铜材料,采用层压或涂布(当它是液态环氧树脂形式时)方式制作。这些介电材料比较便宜,有很多优点,如能很容易地制作微通孔并对其进行电镀,从而缩小微通孔直径等。它可以用于更薄的铜覆层,有利于制作超细间距电路图,在不久的将来,这些优点也能用于2+n+2的结构中。它还可以用于混合制板技术,此时第二层和第m-1层用激光RCC技术制作,在这种情况下,使用液态环氧树脂作为最外面第一层和第m层介电层能同时利用两种工艺的优点并对整个系统进行优化。如果使用RCC技术制作微通孔内层,一般不需要塞孔工艺,并且可达到非常好的共面性;与之相反,使用液态环氧树脂制作的外层能做到更大的图形解析度并进一步缩小微通孔的直径。

    注意事项

    本文(PCB的特殊加工制程.doc)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开