欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江苏专用2016高考数学二轮复习专题四立体几何提升训练理.doc

    • 资源ID:46702984       资源大小:262KB        全文页数:6页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏专用2016高考数学二轮复习专题四立体几何提升训练理.doc

    1【创新设计【创新设计】(江苏专用江苏专用)20162016 高考数学二轮复习高考数学二轮复习 专题四专题四 立体几何立体几何提升训练提升训练 理理立体几何立体几何一、填空题1已知圆柱的底面半径为 1,母线长与底面的直径相等,则该圆柱的表面积为_解析利用圆柱的侧面积公式求解,该圆柱的侧面积为 2124,一个底面圆的面积是,所以该圆柱的表面积为 426.答案62.(2015苏、锡、常、镇调研)如图所示,ABCD是正方形,PA平面ABCD,E,F分别是AC,PC的中点,PA2,AB1,求三棱锥CPED的体积为_解析PA平面ABCD,PA是三棱锥PCED的高,PA2.ABCD是正方形,E是AC的中点,CED是等腰直角三角形AB1,故CEED22,SCED12CEED12222214.故VCPEDVPCED13SCEDPA1314216.答案163(2015山东卷改编)在梯形ABCD中,ABC2,ADBC,BC2AD2AB2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为_解析如图,由题意,得BC2,ADAB1.绕AD所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体2所求体积V1221312153.答案534(2015苏、锡、常、镇调研)设,是三个不重合的平面,l是直线,给出下列四个命题:若,l,则l;若l,l,则;若l上有两点到的距离相等,则l;若,则.其中正确命题的序号是_解析由线线、线面、面面平行与垂直的判定与性质定理逐个判断,真命题为.答案5如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上,若EF平面AB1C,则线段EF的长度等于_解析EF平面AB1C,EF平面ABCD,平面ABCD平面AB1CAC,EFAC,又E是AD的中点,F是CD的中点,即EF是ACD的中位线,EF12AC122 2 2.答案26(2015全国卷改编)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有_斛(取整数)3解析由题意知:米堆的底面半径为163(尺),体积V1314R2h3209(立方尺)所以堆放的米大约为32091.6222(斛)答案227(2015南通模拟)已知m,n表示两条不同直线,表示平面给出以下说法:若m,n,则mn;若m,n,则mn;若m,mn,则n;若m,mn,则n;则上述说法错误的是_(填序号)解析法一若m,n,则m,n可能平行、相交或异面,错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,正确;若m,mn,则n或n,错;若m,mn,则n与可能相交,可能平行,也可能n,错法二如图,在正方体ABCDABCD中,用平面ABCD表示.中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故错中,m,n,满足mn,这是线面垂直的性质,故正确,中,若m为AA,n为AB,满足m,mn,但n,故错中,若m为AB,n为BC,满足m,mn,但n,故错答案8.(2015南师附中模拟)在正三棱锥PABC中,M,N分别是PB,PC的中点,若截面AMN平面PBC,则此棱锥中侧面积与底面积的比为_4解析如图,取BC的中点D,连接AD,PD,且PD与MN的交点为E,连接AE.因为AMAN,E为MN的中点,所以AEMN,又截面AMN平面PBC,所以AE平面PBC,则AEPD,又E点是PD的中点,所以PAAD.设正三棱锥PABC的底面边长为a,则侧棱长为32a,斜高为22a,则此棱锥中侧面积与底面积的比为312a22a34a2 6.答案6二、解答题9.(2012江苏卷)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)因为ABCA1B1C1是直三棱柱,所以CC1平面ABC,又AD平面ABC,所以CC1AD.又因为ADDE,CC1,DE平面BCC1B1,CC1DEE,所以AD平面BCC1B1,又AD平面ADE,所以平面ADE平面BCC1B1.(2)因为A1B1A1C1,F为B1C1的中点,所以A1FB1C1.因为CC1平面A1B1C1,且A1F平面A1B1C1,所以CC1A1F.5又因为CC1,B1C1平面BCC1B1,CC1B1C1C1,所以A1F平面BCC1B1.由(1)知AD平面BCC1B1,所以A1FAD.又AD平面ADE,A1F 平面ADE,所以A1F平面ADE.10(2015苏北四市调研)如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD.E和F分别是CD和PC的中点求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明(1)因为平面PAD平面ABCDAD.又平面PAD平面ABCD,且PAAD.所以PA底面ABCD.(2)因为ABCD,CD2AB,E为CD的中点,所以ABDE,且ABDE.所以ABED为平行四边形所以BEAD.又因为BE 平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,且四边形ABED为平行四边形所以BECD,ADCD.由(1)知PA底面ABCD,所以PACD.又因为PAADA,所以CD平面PAD,从而CDPD,且CD平面PCD,又E,F分别是CD和CP的中点,所以EFPD,故CDEF.由EF,BE在平面BEF内,且EFBEE,所以CD平面BEF.所以平面BEF平面PCD.611(2014常州监测)如图,在直三棱柱A1B1C1ABC中,ABBC,E,F分别是A1B,AC1的中点(1)求证:EF平面ABC;(2)求证:平面AEF平面AA1B1B;(3)若A1A2AB2BC2a,求三棱锥FABC的体积(1)证明如图连接A1C.直三棱柱A1B1C1ABC中,AA1C1C是矩形点F在A1C上,且为A1C的中点在A1BC中,E,F分别是A1B,A1C的中点,EFBC.又BC平面ABC,EF 平面ABC,所以EF平面ABC.(2)证明直三棱柱A1B1C1ABC中,B1B平面ABC,B1BBC.又EFBC,ABBC,ABEF,B1BEF.B1BABB,EF平面ABB1A1.EF平面AEF,平面AEF平面ABB1A1.(3)解VFABC12VA1ABC1213SABCAA1121312a22aa36.

    注意事项

    本文(江苏专用2016高考数学二轮复习专题四立体几何提升训练理.doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开