欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    安徽工业大学附属中学高中数学 3.2.1 —3.2.2古典概型及随机数的产生教案 新人教B版必修3.doc

    • 资源ID:46745285       资源大小:176.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    安徽工业大学附属中学高中数学 3.2.1 —3.2.2古典概型及随机数的产生教案 新人教B版必修3.doc

    -1-3.23.2 古典概型(第四、五课时)古典概型(第四、五课时)3.2.13.2.1 3.2.23.2.2 古典概型及随机数的古典概型及随机数的产生产生一、教学目标:一、教学目标:1 1、知识与技能、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。2 2、过程与方法过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。3 3、情感态度与价值观情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数三、学三、学法与教学用具:法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯四、四、教学设想:教学设想:1 1、创设情境创设情境:(1)掷一枚质地均匀的硬币,结果只有 2 个,即“正面朝上”或“反面朝上”,它们都是随机事件。(2)一个盒子中有 10 个完全相同的球,分别标以号码 1,2,3,10,从中任取一球,只有10 种不同的结果,即标号为 1,2,3,10。师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2 2、基本概念、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本 P121126;(2)古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A3 3、例题分析:、例题分析:课本例题略例 1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。分析:分析:掷骰子有 6 个基本事件,具有有限性和等可能性,因此是古典概型。解:解:这个试验的基本事件共有 6 个,即(出现 1 点)、(出现 2 点)、(出现 6 点)所以基本事件数 n=6,事件 A=(掷得奇数点)=(出现 1 点,出现 3 点,出现 5 点),其包含的基本事件数 m=3所以,P(A)=nm=63=21=0.5-2-小结:小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件 A 所包含的基本事件数,求 m 值时,要做到不重不漏。例 2 从含有两件正品 a1,a2和一件次品 b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。解:解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有 6 个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第 1 次取出的产品,右边的字母表示第 2 次取出的产用 A 表示“取出的两种中,恰好有一件次品”这一事件,则A=(a1,b1),(a2,b1),(b1,a1),(b1,a2)事件 A 由 4 个基本事件组成,因而,P(A)=64=32例 3 现有一批产品共有 10 件,其中 8 件为正品,2 件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续 3 次取出的都是正品的概率;(2)如果从中一次取 3 件,求 3 件都是正品的概率分析分析:(1)为返回抽样;(2)为不返回抽样解解:(1)有放回地抽取 3 次,按抽取顺序(x,y,z)记录结果,则 x,y,z 都有 10 种可能,所以试验结果有 101010=103种;设事件 A 为“连续 3 次都取正品”,则包含的基本事件共有888=83种,因此,P(A)=33108=0.512(2)解法解法 1 1:可以看作不放回抽样 3 次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则 x 有 10 种可能,y 有 9 种可能,z 有 8 种可能,所以试验的所有结果为 1098=720 种 设事件 B 为“3 件都是正品”,则事件 B 包含的基本事件总数为 876=336,所以 P(B)=7203360.467解法解法 2 2:可以看作不放回 3 次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则 x 有 10 种可能,y 有 9 种可能,z 有 8 种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有 10986=120,按同样的方法,事件 B 包含的基本事件个数为 8766=56,因此 P(B)=120560.467小结:小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误例 4 利用计算器产生 10 个 1100 之间的取整数值的随机数。解:解:具体操作如下:键入PRBRAND RANDISTAT DECENTERRANDI(1,100)STAT DEGENTERRAND(1,100)3-3-反复操作 10 次即可得之小结:小结:利用计算器产生随机数,可以做随机模拟试验,在日常生活中,有着广泛的应用。例 5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是 40%,那么在连续三次投篮中,恰有两次投中的概率是多少?分析:分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为 40%。解:解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产 0 到 9 之间的取整数值的随机数。我们用 1,2,3,4 表示投中,用 5,6,7,8,9,0 表示未投中,这样可以体现投中的概率是 40%。因为是投篮三次,所以每三个随机数作为一组。例如:产生 20 组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556这就相当于做了 20 次试验,在这组数中,如果恰有两个数在 1,2,3,4 中,则表示恰有两次投中,它们分别是 812,932,271,191,393,即共有 5 个数,我们得到了三次投篮中恰有两次投中的概率近似为205=25%。小结小结:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题。(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间。(3)随机函数 RANDBETWEEN(a,b)产生从整数 a 到整数 b 的取整数值的随机数。例 6 你还知道哪些产生随机数的函数?请列举出来。解解:(1)每次按 SHIFTRNA#键都会产生一个 01 之间的随机数,而且出现 01 内任何一个数的可能性是相同的。(2)还可以使用计算机软件来产生随机数,如 Scilab 中产生随机数的方法。Scilab 中用rand()函数来产生 01 之间的随机数,每周用一次 rand()函数,就产生一个随机数,如果要产生 ab 之间的随机数,可以使用变换 rand()*(ba)+a 得到4 4、课堂小结:、课堂小结:本节主要研究了古典概型的概率求法,解题时要注意两点:(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤;求出总的基本事件数;求出事件 A 所包含的基本事件数,然后利用公式 P(A)=总的基本事件个数包含的基本事件数A(3)随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个-4-考场中。5 5、自我评价与课堂练习:自我评价与课堂练习:1在 40 根纤维中,有 12 根的长度超过 30mm,从中任取一根,取到长度超过 30mm 的纤维的概率是()A4030B4012C3012D以上都不对2盒中有 10 个铁钉,其中 8 个是合格的,2 个是不合格的,从中任取一个恰为合格铁钉的概率是A51B41C54D1013在大小相同的 5 个球中,2 个是红球,3 个是白球,若从中任取 2 个,则所取的 2 个球中至少有一个红球的概率是。4抛掷 2 颗质地均匀的骰子,求点数和为 8 的概率。5利用计算器生产 10 个 1 到 20 之间的取整数值的随机数。6用 0 表示反面朝上,1 表正面朝上,请用计算器做模拟掷硬币试验。6 6、评价标准:、评价标准:1B提示:在 40 根纤维中,有 12 根的长度超过 30mm,即基本事件总数为 40,且它们是等可能发生的,所求事件包含 12 个基本事件,故所求事件的概率为4012,因此选 B.2C提示:(方法 1)从盒中任取一个铁钉包含基本事件总数为 10,其中抽到合格铁订(记为事件 A)包含 8 个基本事件,所以,所求概率为 P(A)=108=54.(方法 2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件 A)与取到不合格品(记为事件 B)恰为对立事件,因此,P(A)=1P(B)=1102=54.3107提示;记大小相同的 5 个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共 10 个,其中至少有一个红球的事件包括 7 个基本事件,所以,所求事件的概率为107.本题还可以利用“对立事件的概率和为 1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率 P(A),然后利用 P(A)1P(A)求解。4.解:在抛掷 2 颗骰子的试验中,每颗骰子均可出现 1 点,2 点,6 点 6 种不同的结果,我们把两颗骰子标上记号 1,2 以便区分,由于 1 号骰子的一个结果,因此同时掷两颗骰子的结果共有 66=36 种,在上面的所有结果中,向上的点数之和为 8 的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5 种,所以,所求事件的概率为365.5解:具体操作如下键入-5-反复按键 10 次即可得到。6解:具体操作如下:键入7 7、作业:、作业:根据情况安排PRBPAND RANDISTAT DEGENTERPANDI(1,20)STAT DEGENTERPANDI(1,20)3STAT DEGENTERPRBPAND RANDISTAT DEGENTERPANDI(0,1)STAT DEGENTERPANDI(0,1)0STAT DEG

    注意事项

    本文(安徽工业大学附属中学高中数学 3.2.1 —3.2.2古典概型及随机数的产生教案 新人教B版必修3.doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开