中考初中数学基础巩固复习专题(八)三角形.docx
-
资源ID:4726158
资源大小:385.48KB
全文页数:27页
- 资源格式: DOCX
下载积分:19金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中考初中数学基础巩固复习专题(八)三角形.docx
中考初中数学基础巩固复习专题(八)三角形【知识要点】 知识点1 三角形的边、角关系三角形任何两边之和大于第三边;三角形任何两边之差小于第三边;三角形三个内角的和等于180;三角形三个外角的和等于360;三角形一个外角等于和它不相邻的两个内角的和;三角形一个外角大于任何一个和它不相邻的内角。知识点2 三角形的主要线段和外心、内心三角形的角平分线、中线、高;三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到各顶点的距离相等;三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三边的距离相等;连结三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边且等于第三边的一半。知识点3 等腰三角形等腰三角形的识别:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形(等角对等边);三边相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60的等腰三角形是等边三角形。等腰三角形的性质:等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形是轴对称图形,底边的中垂线是它的对称轴;等边三角形的三个内角都等于60。知识点4 直角三角形直角三角形的识别:有一个角等于90的三角形是直角三角形;有两个角互余的三角形是直角三角形;勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。直角三角形的性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;勾股定理:直角三角形两直角边的平方和等于斜边的平方。知识点5 全等三角形定义、判定、性质知识点6 相似三角形知识点7 锐角三角函数与解直角三角形【复习点拨】(1)掌握三角形、三角形的全等、相似及解直角三角形的有关概念。(2)利用三角形的相似、全等及解直角三角形的知识进行计算、解答有关综合题。(3)培养学生的转化、数形结合、及分类讨论的数学思想的能力【典例解析】例题1:(2017重庆B)已知ABCDEF,且相似比为1:2,则ABC与DEF的面积比为()A1:4B4:1C1:2D2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可【解答】解:ABCDEF,且相似比为1:2,ABC与DEF的面积比为1:4,故选A【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键例题2:(2017山东枣庄)如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()A15B30C45D60【考点】KF:角平分线的性质【分析】判断出AP是BAC的平分线,过点D作DEAB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解【解答】解:由题意得AP是BAC的平分线,过点D作DEAB于E,又C=90,DE=CD,ABD的面积=ABDE=154=30故选B例题3:(2017山东枣庄)如图,在ABC中,A=78,AB=4,AC=6,将ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()ABCD【考点】S8:相似三角形的判定【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C例题4:(2017甘肃张掖)如图,已知ABC,请用圆规和直尺作出ABC的一条中位线EF(不写作法,保留作图痕迹)【考点】N3:作图复杂作图;KX:三角形中位线定理【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F线段EF即为所求【解答】解:如图,ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F线段EF即为所求例题5:(2017张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像铜像由像体AD和底座CD两部分组成如图,在RtABC中,ABC=70.5,在RtDBC中,DBC=45,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.50.943,cos70.50.334,tan70.52.824)【考点】T8:解直角三角形的应用【分析】根据等腰直角三角形的性质得出BC的长,再利用tan70.5=求出答案【解答】解:在RtDBC中,DBC=45,且CD=2.3米,BC=2.3m,在RtABC中,ABC=70.5,tan70.5=2.824,解得:AD4.2,答:像体AD的高度约为4.2m例题6:(2017新疆)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:ABC=ADC;AC与BD相互平分;AC,BD分别平分四边形ABCD的两组对角;四边形ABCD的面积S=ACBD正确的是(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质【分析】证明ABCADC,可作判断;由于AB与BC不一定相等,则可知此两个选项不一定正确;根据面积和求四边形的面积即可【解答】解:在ABC和ADC中,ABCADC(SSS),ABC=ADC,故结论正确;ABCADC,BAC=DAC,AB=AD,OB=OD,ACBD,而AB与BC不一定相等,所以AO与OC不一定相等,故结论不正确;由可知:AC平分四边形ABCD的BAD、BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故结论不正确;ACBD,四边形ABCD的面积S=SABD+SBCD=BDAO+BDCO=BD(AO+CO)=ACBD故结论正确;所以正确的有:;故答案为:【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决例题7:(2017重庆B)如图,ABC中,ACB=90,AC=BC,点E是AC上一点,连接BE(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AFBD于点F,连接CD、CF,当AF=DF时,求证:DC=BC【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE=3,于是得到结论;(2)根据等腰直角三角形的性质得到CAB=45,由于AFB=ACB=90,推出A,F,C,B四点共圆,根据圆周角定理得到CFB=CAB=45,求得DFC=AFC=135,根据全等三角形的性质即可得到结论【解答】解:(1)ACB=90,AC=BC,AC=BC=AB=4,BE=5,CE=3,AE=43=1;(2)ACB=90,AC=BC,CAB=45,AFBD,AFB=ACB=90,A,F,C,B四点共圆,CFB=CAB=45,DFC=AFC=135,在ACF与DCF中,ACFDCF,CD=AC,AC=BC,AC=BC【点评】本题考查了全等三角形的判定和性质,四点共圆,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质是解题的关键例题8:(2017湖南岳阳)问题背景:已知EDF的顶点D在ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记ADM的面积为S1,BND的面积为S2(1)初步尝试:如图,当ABC是等边三角形,AB=6,EDF=A,且DEBC,AD=2时,则S1S2=12;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将EDF绕点D旋转至如图所示位置,求S1S2的值;(3)延伸拓展:当ABC是等腰三角形时,设B=A=EDF=()如图,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和的三角函数表示)()如图,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程【分析】(1)首先证明ADM,BDN都是等边三角形,可得S1=22=,S2=(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y首先证明AMDBDN,可得=,推出=,推出xy=8,由S1=ADAMsin60=x,S2=DBsin60=y,可得S1S2=xy=xy=12;(3)如图3中,设AM=x,BN=y,同法可证AMDBDN,可得xy=ab,由S1=ADAMsin=axsin,S2=DBBNsin=bysin,可得S1S2=(ab)2sin2()结论不变,证明方法类似;【解答】解:(1)如图1中,ABC是等边三角形,AB=CB=AC=6,A=B=60,DEBC,EDF=60,BND=EDF=60,BDN=ADM=60,ADM,BDN都是等边三角形,S1=22=,S2=(4)2=4,S1S2=12,故答案为12(2)如图2中,设AM=x,BN=yMDB=MDN+NDB=A+AMD,MDN=A,AMD=NDB,A=B,AMDBDN,=,=,xy=8,S1=ADAMsin60=x,S2=DBsin60=y,S1S2=xy=xy=12(3)如图3中,设AM=x,BN=y,同法可证AMDBDN,可得xy=ab,S1=ADAMsin=axsin,S2=DBBNsin=bysin,S1S2=(ab)2sin2如图4中,设AM=x,BN=y,同法可证AMDBDN,可得xy=ab,S1=ADAMsin=axsin,S2=DBBNsin=bysin,S1S2=(ab)2sin2【点评】本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题【达标检测】一、选择题1. (2017甘肃张掖)已知a,b,c是ABC的三条边长,化简|a+bc|cab|的结果为()A2a+2b2cB2a+2bC2cD0【考点】K6:三角形三边关系【分析】先根据三角形的三边关系判断出abc与cb+a的符号,再去绝对值符号,合并同类项即可【解答】解:a、b、c为ABC的三条边长,a+bc0,cab0,原式=a+bc+(cab)=0故选D2.3. (2017张家界)如图,D,E分别是ABC的边AB,AC上的中点,如果ADE的周长是6,则ABC的周长是()A6B12C18D24【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理【分析】根据线段中点的性质求出AD=AB、AE=AC的长,根据三角形中位线定理求出DE=AB,根据三角形周长公式计算即可【解答】解:D、E分别是AB、AC的中点,AD=AB,AE=AC,DE=BC,ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=26=12故选B4. 如图,在中,的平分线相交于点,过点作交于点,则的长为( )A B C D【考点】角平分线,相似,直角三角形内切圆半径【分析】先求出直角三角形内切圆半径=2,再利用相似求【解答】解:延长FE交AB于点D,作EDBC,EHAC则ED=EG=EH=2设EF=FC=xADFABC即x=故选C5. (2017湖北襄阳)如图,在ABC中,ACB=90,A=30,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A5B6C7D8【考点】N2:作图基本作图;KO:含30度角的直角三角形【分析】连接CD,根据在ABC中,ACB=90,A=30,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论【解答】解:连接CD,在ABC中,ACB=90,A=30,BC=4,AB=2BC=8作法可知BC=CD=4,CE是线段BD的垂直平分线,CD是斜边AB的中线,BD=AD=4,BF=DF=2,AF=AD+DF=4+2=6故选B二、填空题:6. (2017湖南株洲)如图示在ABC中B=25【考点】KN:直角三角形的性质【分析】由直角三角形的两个锐角互余即可得出答案【解答】解:C=90,B=90A=9065=25;故答案为:257. (2017甘肃张掖)如图,一张三角形纸片ABC,C=90,AC=8cm,BC=6cm现将纸片折叠:使点A与点B重合,那么折痕长等于cm【考点】PB:翻折变换(折叠问题)【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证ACBAGH,利用比例式可求GH的长,即折痕的长【解答】解:如图,折痕为GH,由勾股定理得:AB=10cm,由折叠得:AG=BG=AB=10=5cm,GHAB,AGH=90,A=A,AGH=C=90,ACBAGH,=,=,GH=cm故答案为:8. 在边长为4的等边三角形中,为边上的任意一点,过点分别作,垂足分别为,则 【考点】等边三角形,三角函数【分析】根据,利用整体代入法求出【解答】解:在三角形BDE中,在三角形DCF中,9. (2017湖南株洲)如图示,若ABC内一点P满足PAC=PBA=PCB,则点P为ABC的布洛卡点三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(ALCrelle 17801855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 18451922)重新发现,并用他的名字命名问题:已知在等腰直角三角形DEF中,EDF=90,若点Q为DEF的布洛卡点,DQ=1,则EQ+FQ=()A5B4CD【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形【分析】由DQFFQE,推出=,由此求出EQ、FQ即可解决问题【解答】解:如图,在等腰直角三角形DEF中,EDF=90,DE=DF,1=2=3,1+QEF=3+DFQ=45,QEF=DFQ,2=3,DQFFQE,=,DQ=1,FQ=,EQ=2,EQ+FQ=2+,故选D10. (2017浙江义乌)如图,AOB=45,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=44或4x4【考点】KI:等腰三角形的判定【分析】分三种情况讨论:先确定特殊位置时成立的x值,如图1,当M与O重合时,即x=0时,点P恰好有三个;如图2,构建腰长为4的等腰直角OMC,和半径为4的M,发现M在点D的位置时,满足条件;如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可【解答】解:分三种情况:如图1,当M与O重合时,即x=0时,点P恰好有三个;如图2,以M为圆心,以4为半径画圆,当M与OB相切时,设切点为C,M与OA交于D,MCOB,AOB=45,MCO是等腰直角三角形,MC=OC=4,OM=4,当M与D重合时,即x=OMDM=44时,同理可知:点P恰好有三个;如图3,取OM=4,以M为圆心,以OM为半径画圆,则M与OB除了O外只有一个交点,此时x=4,即以PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现M1与直线OB有一个交点;当4x4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=44或4故答案为:x=0或x=44或4三、解答题11. (2017江西)我们定义:如图1,在ABC看,把AB点绕点A顺时针旋转(0180)得到AB,把AC绕点A逆时针旋转得到AC,连接BC当+=180时,我们称ABC是ABC的“旋补三角形”,ABC边BC上的中线AD叫做ABC的“旋补中线”,点A叫做“旋补中心”特例感知:(1)在图2,图3中,ABC是ABC的“旋补三角形”,AD是ABC的“旋补中线”如图2,当ABC为等边三角形时,AD与BC的数量关系为AD=BC;如图3,当BAC=90,BC=8时,则AD长为4猜想论证:(2)在图1中,当ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明拓展应用(3)如图4,在四边形ABCD,C=90,D=150,BC=12,CD=2,DA=6在四边形内部是否存在点P,使PDC是PAB的“旋补三角形”?若存在,给予证明,并求PAB的“旋补中线”长;若不存在,说明理由【考点】LO:四边形综合题【分析】(1)首先证明ADB是含有30是直角三角形,可得AD=AB即可解决问题;首先证明BACBAC,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=BC如图1中,延长AD到M,使得AD=DM,连接EM,CM,首先证明四边形ACMB是平行四边形,再证明BACABM,即可解决问题;(3)存在如图4中,延长AD交BC的延长线于M,作BEAD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作PCD的中线PN连接DF交PC于O想办法证明PA=PD,PB=PC,再证明APD+BPC=180,即可;【解答】解:(1)如图2中,ABC是等边三角形,AB=BC=AB=AB=AC,DB=DC,ADBC,BAC=60,BAC+BAC=180,BAC=120,B=C=30,AD=AB=BC,故答案为如图3中,BAC=90,BAC+BAC=180,BAC=BAC=90,AB=AB,AC=AC,BACBAC,BC=BC,BD=DC,AD=BC=BC=4,故答案为4(2)结论:AD=BC理由:如图1中,延长AD到M,使得AD=DM,连接EM,CMBD=DC,AD=DM,四边形ACMB是平行四边形,AC=BM=AC,BAC+BAC=180,BAC+ABM=180,BAC=MBA,AB=AB,BACABM,BC=AM,AD=BC(3)存在理由:如图4中,延长AD交BC的延长线于M,作BEAD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作PCD的中线PN连接DF交PC于OADC=150,MDC=30,在RtDCM中,CD=2,DCM=90,MDC=30,CM=2,DM=4,M=60,在RtBEM中,BEM=90,BM=14,MBE=30,EM=BM=7,DE=EMDM=3,AD=6,AE=DE,BEAD,PA=PD,PB=PC,在RtCDF中,CD=2,CF=6,tanCDF=,CDF=60=CPF,易证FCPCFD,CD=PF,CDPF,四边形CDPF是矩形,CDP=90,ADP=ADCCDP=60,ADP是等边三角形,ADP=60,BPF=CPF=60,BPC=120,APD+BPC=180,PDC是PAB的“旋补三角形”,在RtPDN中,PDN=90,PD=AD=6,DN=,PN=12. (2017湖南岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,BAC=CDE=30,DE=80cm,AC=165cm(1)求支架CD的长;(2)求真空热水管AB的长(结果保留根号)【分析】(1)在RtCDE中,根据CDE=30,DE=80cm,求出支架CD的长是多少即可(2)首先在RtOAC中,根据BAC=30,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少【解答】解:(1)在RtCDE中,CDE=30,DE=80cm,CD=80cos30=80=40(cm)(2)在RtOAC中,BAC=30,AC=165cm,OC=ACtan30=165=55(cm),OD=OCCD=5540=15(cm),AB=AOOB=AOOD=55215=95(cm)【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题)13. (2017湖南株洲)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF求证:DAEDCF; 求证:ABGCFG【考点】S8:相似三角形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质【分析】由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到BAG=BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证【解答】证明:正方形ABCD,等腰直角三角形EDF,ADC=EDF=90,AD=CD,DE=DF,ADE+ADF=ADF+CDF,ADE=CDF,在ADE和CDF中,ADECDF;延长BA到M,交ED于点M,ADECDF,EAD=FCD,即EAM+MAD=BCD+BCF,MAD=BCD=90,EAM=BCF,EAM=BAG,BAG=BCF,AGB=CGF,ABGCFG14. (2017浙江义乌)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD(结果精确到0.1m,参考数据:tan200.36,tan180.32)【考点】TA:解直角三角形的应用仰角俯角问题【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【解答】解:(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m15. (2017浙江义乌)已知ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设BAD=,CDE=(1)如图,若点D在线段BC上,点E在线段AC上如果ABC=60,ADE=70,那么=20,=10,求,之间的关系式(2)是否存在不同于以上中的,之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由【考点】KY:三角形综合题【分析】(1)先利用等腰三角形的性质求出DAE,进而求出BAD,即可得出结论;利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论【解答】解:(1)AB=AC,ABC=60,BAC=60,AD=AE,ADE=70,DAE=1802ADE=40,=BAD=6040=20,ADC=BAD+ABD=60+20=80,=CDE=ADCADE=10,故答案为:20,10;设ABC=x,AED=y,ACB=x,AED=y,在DEC中,y=+x,在ABD中,+x=y+=+x+,=2;(2)当点E在CA的延长线上,点D在线段BC上,如图1设ABC=x,ADE=y,ACB=x,AED=y,在ABD中,x+=y,在DEC中,x+y+=180,=2180,当点E在CA的延长线上,点D在CB的延长线上,如图2,同的方法可得=1802