最新2018年中考数学复习难题突破专题十讲:2018年中考数学复习难题突破专题十:数学文化问题(免费下载).doc
-
资源ID:4845725
资源大小:223.61KB
全文页数:11页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最新2018年中考数学复习难题突破专题十讲:2018年中考数学复习难题突破专题十:数学文化问题(免费下载).doc
难题突破专题十一数学文化数学文化指数学的思想、精神、方法、观点、语言,以及它们的形成和发展。数学作为一种文化现象,早已是人们的常识。在近几年的中考中,以数学文化为载体的数学题越来越多,只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看本质,问题便可迎刃而解类型1以科技或数学时事为题材例题1:贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角CAD=60°,求第二次施救时云梯与水平线的夹角BAD的度数(结果精确到1°)【考点】T8:解直角三角形的应用【分析】延长AD交BC所在直线于点E解RtACE,得出CE=AEtan60°=15米,解RtABE,由tanBAE=,得出BAE71°【解答】解:延长AD交BC所在直线于点E由题意,得BC=17米,AE=15米,CAE=60°,AEB=90°,在RtACE中,tanCAE=,CE=AEtan60°=15米在RtABE中,tanBAE=,BAE71°答:第二次施救时云梯与水平线的夹角BAD约为71°例题2:(2016·浙江省绍兴市·4分)我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A84 B336 C510 D1326【考点】用数字表示事件【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数【解答】解:1×73+3×72+2×7+6=510,故选C类型2以数学名著为题材例题3:(2017湖北荆州)九章算术中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()Ax26=(10x)2Bx262=(10x)2Cx2+6=(10x)2Dx2+62=(10x)2【考点】KU:勾股定理的应用【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可【解答】解:如图,设折断处离地面的高度为x尺,则AB=10x,BC=6,在RtABC中,AC2+BC2=AB2,即x2+62=(10x)2故选D例题4:(2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数世界上第一次给出勾股数通解公式的是我国古代数学著作九章算术,其勾股数组公式为:其中mn0,m,n是互质的奇数应用:当n=1时,求有一边长为5的直角三角形的另外两条边长【考点】KT:勾股数;KQ:勾股定理【分析】由n=1,得到a=(m21),b=m,c=(m2+1),根据直角三角形有一边长为5,列方程即可得到结论【解答】解:当n=1,a=(m21),b=m,c=(m2+1),直角三角形有一边长为5,、当a=5时,(m21)=5,解得:m=(舍去),、当b=5时,即m=5,代入得,a=12,c=13,、当c=5时,(m2+1)=5,解得:m=±3,m0,m=3,代入得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4类型3以数学名人为题材例题5:(2017湖南株洲)如图示,若ABC内一点P满足PAC=PBA=PCB,则点P为ABC的布洛卡点三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(ALCrelle 17801855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 18451922)重新发现,并用他的名字命名问题:已知在等腰直角三角形DEF中,EDF=90°,若点Q为DEF的布洛卡点,DQ=1,则EQ+FQ=()A5B4CD【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形【分析】由DQFFQE,推出=,由此求出EQ、FQ即可解决问题【解答】解:如图,在等腰直角三角形DEF中,EDF=90°,DE=DF,1=2=3,1+QEF=3+DFQ=45°,QEF=DFQ,2=3,DQFFQE,=,DQ=1,FQ=,EQ=2,EQ+FQ=2+,故选D相关内容训练1. (2017四川眉山)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学九章算术中的“井深几何”问题,它的题意可以由图获得,则井深为()A1.25尺B57.5尺C6.25尺D56.5尺【考点】KU:勾股定理的应用【分析】根据题意可知ABFADE,根据相似三角形的性质可求AD,进一步得到井深【解答】解:依题意有ABFADE,AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=ADAB=62.55=57.5尺故选:B2. (2017内蒙古赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示已知AC=20cm,BC=18cm,ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由(提示:sin50°0.8,cos50°0.6,tan50°1.2)【考点】T8:解直角三角形的应用【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题【解答】解:王浩同学能将手机放入卡槽AB内理由:作ADBC于点D,C=50°,AC=20cm,AD=ACsin50°=20×0.8=16cm,CD=ACcos50°=20×0.6=12cm,BC=18cm,DB=BCCD=1812=6cm,AB=,17=,王浩同学能将手机放入卡槽AB内3. (2017湖北随州)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan55°1.4,tan35°0.7,sin55°0.8,sin35°0.6)【考点】TA:解直角三角形的应用仰角俯角问题【分析】作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtanCAH=tan55°x知CE=CHEH=tan55°x10,根据BE=DE可得关于x的方程,解之可得【解答】解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55°x,CE=CHEH=tan55°x10,DBE=45°,BE=DE=CE+DC,即43+x=tan55°x10+35,解得:x45,CH=tan55°x=1.4×45=63,答:塔杆CH的高为63米4. 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺)故答案为:25【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解5. (2016·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆已知OA=OB=10cm(1)当AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm)(参考数据:sin9°0.1564,cos9°0.9877,sin18°0.3090,cos18°0.9511,可使用科学计算器)【考点】解直角三角形的应用【分析】(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90°,AOB=18°,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决【解答】解:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90°,AOB=18°,BOC=9°AB=2BC=2OBsin9°2×10×0.15643.13cm,即所作圆的半径约为3.13cm;(2)作ADOB于点D,作AE=AB,如下图3所示,保持AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18°,OA=OB,ODA=90°,OAB=81°,OAD=72°,BAD=9°,BE=2BD=2ABsin9°2×3.13×0.15640.98cm,即铅笔芯折断部分的长度是0.98cm6(2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米如图,已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度【考点】相似三角形的应用【分析】根据镜面反射原理结合相似三角形的判定方法得出ABCEDC,ABFGFH,进而利用相似三角形的性质得出AB的长【解答】解:由题意可得:ABC=EDC=GFH=90°,ACB=ECD,AFB=GHF,故ABCEDC,ABFGFH,则=, =,即=, =,解得:AB=99,答:“望月阁”的高AB的长度为99m